

 1a) The propositional logic formula \((X\ \vee\ \left(\neg X\ \rightarrow\ Y)\right)\) is (1p) satisfiable falsifiable tautological unsatisfiable 	
 satisfiable falsifiable tautological unsatisfiable 	
 falsifiable tautological unsatisfiable 	
 tautological unsatisfiable 	
unsatisfiable	
1b) The propositional logic formulas ϕ and ψ are logically equivalent. Which of the f statements follow? (1p)	ollowing
φ = ψ	
\Box ϕ is satisfiable	
$\Box \phi$ is unsatisfiable	
\Box ($\phi \lor \neg \psi$) is a tautology	
1c) Which of the following statements about logical formulas are correct? (1p)	
\Box We can test I = ϕ in polynomial time	
There exist formulas that are valid and unsatisfiable	
\Box If $\phi \equiv \psi$, then ϕ is satisfiable iff ψ is satisfiable	
$\hfill \hfill $	
1d) Which of the following statements about propositional logic formulas are true? (1p)
$\hfill \hfill $	
$\hfill \hfill $	
$\hfill \hfill If \phi$ is satisfiable, then $\neg \phi$ is also satisfiable	
$\hfill \hfill $	
1e) Which of the following statements about propositional logic are true? (1p)	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
$\label{eq:product} \Box \mbox{ We can test } \Phi \mid = \psi \mbox{ by checking if } (\mbox{heg}(\mbox{bigwedge}(\mbox{heg}($	sfiable
$\hfill \hfill $	
SAT instances far away from the phase transition are generally easy to solve	
1f) Transform the logical formula $\varphi = ((A \land B) \leftrightarrow \neg C) \land (\neg B \rightarrow \neg C)$ into conjunctive applying logical equivalences. Which of the formulas below is the result? (Note that literals within clauses may be rearranged freely.) (3p)	normal form by clauses and
$\square (A \lor C) \land (A \lor B \lor \neg C) \land (B \lor C) \land (\neg B \lor \neg C)$	
$\square (A \lor C) \land (\neg A \lor \neg B \lor \neg C) \land (B \lor C) \land (B \lor \neg C)$	
$\Box (A \lor C) \land (\neg A \lor B \lor \neg C) \land (B \lor C) \land (\neg B \lor \neg C)$	

2. Bayesian Networks

Consider the following problem:

A company is trying to hire a recent college graduate. The company aims to hire an intelligent employee, but there is no way to test intelligence directly. The company does have information about a student's grade in a relevant course, the student's national SAT score, and the quality of a recommendation letter for the course.

A student's **Grade** (High or Low) in a relevant course is dependent on the student's **Intelligence** (High or Low) and the **Difficulty** (Easy or Hard) of the course. A student's national **SAT score** (High or Low) is also dependent on the student's **Intelligence**. Additionally, the student's recommendation **Letter** (Good or Bad) for the course is dependent on the student's **Grade**.

2a) Which of the following Bayesian networks represent the causal links described in the problem example defined above? (1p)

Probabilities for the Bayesian network: P(d = Easy) = 0.4 P(d = Hard) = 0.6P(i = High) = 0.7 P(i = Low) = 0.3P(s = High | i = High) = 0.95 P(s = Low | i = High) = 0.05P(s = High | i = Low) = 0.2 P(s = Low | i = Low) = 0.8P(I = Good | g = High) = 0.9 P(I = Bad | g = High) = 0.1P(I = Good | g = Low) = 0.4 P(I = Bad | g = Low) = 0.6P(g = High | i = High, d = Hard) = 0.7 P(g = Low | i = High, d = Hard) = 0.3P(g = High | i = High, d = Easy) = 0.95 P(g = Low | i = High, d = Easy) = 0.05P(g = High | i = Low, d = Hard) = 0.1 P(g = Low | i = Low, d = Hard) = 0.9 P(g = High | i = Low, d = Easy) = 0.5 P(g = Low | i = Low, d = Easy) = 0.52c) Using the formula for the full joint probability distribution and the probabilities given in the table above select statements which are True: (4p) P(g = High, i = Low, d = Hard, s = High, I = Good) = $\Box_{0.1\cdot0.3\cdot0.6\cdot0.2\cdot0.9}^{(19-119,1)} = 0.00324$ P(g = High, i = Low, d = Hard, s = High, I = Good) = $\Box_{0.7\cdot0.3\cdot0.6\cdot0.1\cdot0.9}^{(y)} = 0.01134$ $\label{eq:product} \square \begin{array}{l} P(i = High \mid g = High, \, s = High, \, I = Good) = \alpha \cdot ((sum_D^{ })) P(g, \, i, \, D, \, s, \, I), \, where \, \alpha \ is \ the \ normalization \ factor \end{array}$ $P(i = High | g = High, s = High, I = Good) = \alpha \cdot ((sum_{I, D}^{ })) P(g, a)$ \Box I, D, s, I), where α is the normalization factor \square P(i = High | g = High, s = High, l = Good) \(\approx\) 0.97 \square P(i = High | g = High, s = High, I = Good) \(\approx\) 0.81 $\square P(g, i, d, s) = \langle \langle sum_{L}^{\{ \}} \rangle P(g, i, d, s, L)$ $P(g, i, d, s) = \alpha \cdot (\langle sum_{L}^{ } \rangle) P(g, i, d, s, L)$, where $\alpha =$ \(\frac{1}{ \sum_{G,L}P(G,i, d, s, L)}\) This space is available for comments and/or assumptions that you wish to state. В Ι **⊻ !**Ξ **!**Ξ á 0 / 10000 Word Limit

Calculator

3. CSP

The following questions pertain to Constraint Satisfaction Problems (CSPs). CSPs consist of a set of variables, a value domain for each variable, and a set of constraints. A solution to a CS problem is a consistent set of bindings to the variables that satisfy the constraints. The figure below shows a constraint graph with eight variables. The value domains for each variable are the integer numbers 2 to 8. The constraints state that adjacent/connected nodes cannot have consecutive numbers, and they must be different. For example, if node C is labeled 3, then nodes A, D, and G cannot be labeled with either 2 or 4 (consecutive numbers) or 3 (the same number).

3a) Select the statements that are True: (1p)

Applying the *most constraining variable order heuristic* to a CSP selects a variable with the fewest possible bindings left.

Applying the *most constraining variable order heuristic* to a CSP
 selects a variable that is involved in the largest number of constraints on other unassigned variables.

If we apply the *most constraining variable order heuristic* to the constraint graph above, the C and F nodes will be chosen as potential candidates for labeling.

If we apply the *most constraining variable order heuristic* to the constraint graph above, the D node will be chosen as potential candidates for labeling.

3b) Select the statements that are True: (1p)

Applying the *minimum conflicts heuristic* to a CSP selects a value for
 □ the chosen variable that yields the lowest number of consistent values in the neighboring variables in the constraint graph.

Applying the *minimum conflicts heuristic* to a CSP selects a value for the chosen variable that rules out the fewest choices for the neighboring variables in the constraint graph.

Assuming a variable was chosen using the *most constraining variable* order heuristic in the previous question, the *minimum conflicts* heuristic will select 2 and 8 as the potential candidate values.

Assuming a variable was chosen using the *most constraining variable* order heuristic in the previous question, the *minimum conflicts* heuristic will select 3, 4, 5, 6, and 7 as the potential candidate values.

euristic va view. As	ne game tro alues and v sume sear	ee in the where all ch is in th	figure be heuristic ne left to	low in whic values are right direct	ch the leaf from the l ion.	nodes sho MAX playe	ow ers poir
MAX				A			
MIN	B		c ,	λ			
MAX E		F	G	Н	Ĭ		
4	9 (12)	-12		8		2	3
		Figure	1: Two pla	yer game se	arch		
a) Apply t tove the fi ach node	he MinMax irst player (in form of a	c algorithr (maximise a table or	m to the g er) would text (e.g	game tree make. Pro J. A: value,	in the figur ovide heur B: value e	re and stat istic value: etc.). (2p)	e what s for
B I	⊻ !≣	i⊒ á					
						0 / 10000 Wc	ord Limit
b) In the g sing the a elevant α/ e cutoff ba bove. To g elow X" of	game tree a Iphabeta p β values in ased on thi describe ed r "edge bet	above, wh oruning pr the node is evaluat dges use tween X a	hat node ocedure s of the ion. Use one of th and Y". (2	s would nc ? Justify yo tree and w annotation le following 2p)	ot need to b bur answer hy certain n similar to g notations	o / 10000 Wo be examine in terms o branches the quest : "second	ord Limit ed of the would ion edge
b) In the g sing the a elevant α/ e cutoff ba bove. To c elow X" of B I	game tree a Iphabeta p β values in ased on thi describe eo r "edge bet ⊻ I ∷	above, wi pruning pr the node is evaluat dges use tween X a i= á	hat node ocedure es of the ion. Use one of th and Y". (2	s would no ? Justify yo tree and w annotation le following 2p)	ot need to b our answer hy certain n similar to g notations	o / 10000 Wo be examine in terms o branches the quest : "second	ed of the would ion edge
b) In the g sing the a elevant α/ e cutoff ba bove. To c elow X" of B I	game tree a Iphabeta p β values in ased on thi describe ec r "edge bet	above, wl pruning pr the node is evaluat dges use tween X a ≟⊑ á	nat node ocedure os of the ion. Use one of th and Y". (2	s would no ? Justify yo tree and w annotation le following 2p)	ot need to b our answer hy certain n similar to g notations	o / 10000 Wa be examine in terms o branches the quest : "second	ed of the would ion edge
b) In the g sing the a elevant α/ e cutoff ba bove. To d elow X" of B I	game tree a Iphabeta p β values in ased on thi describe eo r "edge bet ⊻ : Ξ	above, wi pruning pr the node is evaluat dges use tween X a	hat node ocedure es of the ion. Use one of th and Y". (2	s would nc ? Justify yo tree and w annotation e following 2p)	ot need to k bur answer hy certain n similar to g notations	0 / 10000 Wo be examine in terms o branches the quest : "second	ord Limit ed of the would ion edge
b) In the g sing the a elevant α/ e cutoff ba bove. To d elow X" of B <i>I</i> c) What is earch nod	game tree a Iphabeta p β values in ased on thi describe ec r "edge bet ⊻ I ☷ s the differe	above, wh pruning pr the node is evaluat dges use tween X a i = á i = á	hat node ocedure s of the ion. Use one of th and Y". (2 veen a w nction us	s would nc ? Justify yo tree and w annotation te following 2p) orld state, eful? (2p)	ot need to b bur answer hy certain n similar to g notations	0 / 10000 Wo be examine in terms o branches the quest : "second 0 / 10000 Wo scription, a	ord Limit ed of the would ion edge
b) In the g sing the a elevant α/ e cutoff ba bove. To d elow X" of B <i>I</i> c) What is earch nod B <i>I</i>	game tree a Iphabeta p β values in ased on thi describe ed r "edge bet U I ☷ s the differe de? Why is	above, whoruning printhe node is evaluating evaluating evaluating evaluating evaluating evaluating evaluating evaluating evaluating is evaluating is above, who evaluating is a solution is evaluating the evaluation of the evaluat	hat node rocedure es of the tion. Use one of th and Y". (2 veen a w nction us	s would no ? Justify yo tree and w annotation te following 2p) orld state, eful? (2p)	ot need to b bur answer hy certain n similar to g notations	0 / 10000 Wo be examine in terms of branches the quest : "second 0 / 10000 Wo scription, a	ord Limit ed of the would ion edge
b) In the gasing the a elevant α/β be cutoff based bove. To conclusion with the cutoff based bove. To concluse the cutoff based bove with the cutoff based bove. To concluse the cutoff based bove with the cutoff based based bove with the cutoff based	game tree a Iphabeta p β values in ased on thi describe ed r "edge bet U Ξ s the difference le? Why is U Ξ	above, whoruning printhe node is evaluated ges use tween X and tween X and the second	hat node ocedure es of the ion. Use one of th and Y". (2 veen a w nction us	s would no ? Justify yo tree and w annotation te following 2p) orld state, eful? (2p)	ot need to b our answer hy certain n similar to g notations	0 / 10000 Wo be examine in terms o branches the quest : "second	ord Limit ed of the would ion edge

A* search is the most widely-known form of best-first search. 4d) Explain what an admissible heuristic function is. (1p) **⊻ !**Ξ **!**Ξ á **T**² В Ι 0 / 10000 Word Limit 4e) Suppose a robot is searching for a path from one location to another in a rectangular grid of locations in which there are arcs between adjacent pairs of locations and the arcs only go in north-south (south-north) and east-west (west-east) directions. Furthermore, assume that the robot can only travel on these arcs and that some of these arcs have obstructions which prevent passage across such arcs. Provide an admissible heuristic for this problem. Explain why it is an admissible heuristic and justify your answer explicitly. (2p) В *I* <u>∪</u> <u>i</u>≡ <u>i</u>≡ á 0 / 10000 Word Limit

Que	estions 5a - 5e gives 0.5 points for each correct answer and -0.5 points for each incorrect answer. In total you can
jet	7 points for these.
5a) inco	Which of the following statements about planning formalisms are true? (Each correct answer gives 0.5p, each prrect answer gives -0.5
(] The state-space induced by a planning task Π can be exponentially larger than the encoding of Π .
(The main difference between STRIPS tasks and SAS+ tasks is the size of the variable domains.
(In SAS+ conditions are represented by partial states.
(Some tasks require multi-valued variables and can thus only be encoded in SAS+.
5b) ans	Which of the following statements are true for all propositional planning tasks? (Each correct swer gives 0.5p, each incorrect answer gives -0.5p)
(The number of states grows exponentially in the number of state variables.
(A solution to a planning task with n state variable has length at most n-1.
(We can determine in polynomial time if a solution of length at most 2 exists.
(The number of operators is finite.
5c) 0.5	Which of the following statements about planning heuristics are true? (Each correct answer gives p, each incorrect answer gives -0.5p)
(For optimal planning, we want heuristics to be admissible
(Every relaxed plan is a plan
(A PDB heuristic with a pattern containing n binary variables can be precomputed and stored in space linear in n.
(It is possible to create a PDB heuristic that is equal to the perfect heuristic $h\star$.
5d) (Ea	Which of these statements about delete relaxation for propositional planning tasks are correct? ich correct answer gives 0.5p, each incorrect answer gives -0.5p)
(Delete-relaxation simplifies a planning task by reducing the number of states.
(If a planning task is solvable, then its delete relaxation is solvable.
(The relaxed planning graph for a delete-relaxed planning task can be constructed in polynomial time.
(The main advantage of hmax over h+ is that it is more efficiently computable.
5e) giv	Which of the following statements about probabilistic planning are true? (Each correct answer es 0.5p, each incorrect answer gives -0.5p)
(Value iteration and policy iteration are both techniques that converge to an optimal policy.
(Value iteration uses Bellman backups and policy iteration is based on Monte-Carlo backups.
(The Markov property states that the probability distribution for the next state only depends on the current state and the applied action.
[The Markov property is true for MDPs and SSPs.

5f) Consider the SSP T = $\langle \{s0, s1, s2, s3\}, \{o1, ..., o4\}, c, T, s0, \{s3\} \rangle$ with cost function c(o1) = 2, c(o2) = 3, c(o3) = 1and c(o4) = 6, and transition function T as follows: T(s0, o1, s2) = 0.1 T(s0, o1, s3) = 0.9 T(s0, o2, s1) = 1 T(s1, o3, s0) = 0.5 T(s1, o3, s3) = 0.5 T(s2, o4, s2) = 0.5 T(s2, o4, s3) = 0.5

T(s, o, s') = 0 for all other s, o, s'

Determine $V_*(s2)$ using the Bellman equations. It may help you to draw a graphical representation of T , but you do not get any points for it. Only enter the final numeric value, nothing else. (3p)

. N	Лас	hin	e L	ear	ning)							
a) E	xplaiı	n the	conce	ept of	overf	itting a	and a p	principl	ed wa	y to o	detect	t it. (2	p)
B	Ι	Ū	E		á								
										0	/ 10000) Word	Limit

■ Calculator