
Concurrent programming

and Operating Systems
Lesson 3

Dag Jönsson

1 Lab 5

wait

Input validation

Testing

2 Lab 6

File system

Hints

TDDE47/TDDE68 Dag Jönsson 2024-02-22 2

Overview

• Implement syscall wait - handle di�erent scenarios

• Implement input validation - check to make sure
that we get valid input from the user program

TDDE47/TDDE68 Dag Jönsson 2024-02-22 3

Lab 4: Refresher

TDDE47/TDDE68 Dag Jönsson 2024-02-22 4

wait

• int wait(pid_t pid) - sleep the parent until child
�nishes and return the child's exit status.

• De�ne a new structure for the shared memory

1 s t r u c t parent_chi ld {
2 i n t ex i t_sta tus ;
3 i n t a l ive_count ;
4 /* Whatever e l s e
5 you need */
6 } ;

Parent

pcs

Child

TDDE47/TDDE68 Dag Jönsson 2024-02-22 5

wait

• Scenarios:

� Parent calls wait before the child terminates
� Parent calls wait after the child terminates
� Parent terminates before the child, without wait
� Parent terminates after the child without wait

• In each of these scenarios, your code must work
and shared resources need to be freed when it's not
needed anymore

• Remember that a process can have several children,
but only one parent!

TDDE47/TDDE68 Dag Jönsson 2024-02-22 6

wait

• wait can only be called once per child.

• If anything goes wrong, -1 is expected as the return.

• Busy waiting is NOT allowed.

• Hint: Since the exit status has to be available even
after the child terminates, store in dynamically
allocated memory.

TDDE47/TDDE68 Dag Jönsson 2024-02-22 7

wait scenario 1

parent waits for child to exit

Child

Parent exec wait return X

exit(X)

Free the pcs

TDDE47/TDDE68 Dag Jönsson 2024-02-22 8

wait scenario 2

child exists before the parent, and then the parent waits

Child

Parent exec wait(Child) return X

exit(X)

Free the pcs

TDDE47/TDDE68 Dag Jönsson 2024-02-22 9

wait scenario 3

parent never waits for the child and exits

Child

Parent exec exit(Y)

exit(X)

Free the pcs

TDDE47/TDDE68 Dag Jönsson 2024-02-22 10

Input validation

• Argument paranoia: nothing the user processes
does should crash Pintos

• Example: read(STDIN_FILENO, 0xc0000000,

512);

• All pointers from the user processes to the kernel
must be validated!

• If a pointer is not valid, the caller should be
terminated with exit status -1

TDDE47/TDDE68 Dag Jönsson 2024-02-22 11

Input validation

• A valid pointer from a user process comply with
the following:

� Below PHYS_SPACE in virtual memory (not in
kernel memory)

� Associated with a page in the page table for the
calling process (pagedir_get_page())

• pagedir_get_page() is an expensive operation, so
it's not e�ecient to call it for every address. It's
possible to only use it once per page a given bu�er
spans. (Why? How?)

TDDE47/TDDE68 Dag Jönsson 2024-02-22 12

Input validation

• Suppose a process calls
create((char *) PHYS_BASE - 12345, 17);

• filesys_create() does not validate the string,
and the string is not null. This will likely crash
Pintos.

• Hint: You must check that the char * is a valid
C-string by iterating over every character, and
check that the pointer is valid. A valid C-string is
null terminated ('\0')

TDDE47/TDDE68 Dag Jönsson 2024-02-22 13

Input validation

• Suppose a user process calls
write(1, malloc(1), 1000);

• Hint: We must check that every possible pointer is
valid. In this case that would mean checking 1000
pointers (at most; you can optimise this by
computing the page boundaries, and check those).

• Hint: In contrast to strings, the size is given and we
do not have to search for '\0'

TDDE47/TDDE68 Dag Jönsson 2024-02-22 14

Input validation

• The user process can modify its own stack pointer:
asm volatile("movl $0x0, %esp; int $0x30"

:::);

• That means that you need to validate the stack
pointer as well. If you increment the stack pointer,
you need to redo that check!

• In other words, you need to validate the stack
pointer for every argument you extract.

• Note that to check the memory for an integer you
need to treat it as a 4 byte array (Why?)

TDDE47/TDDE68 Dag Jönsson 2024-02-22 15

Testing

• once you have implemented a solution for lab 5,
you can run tests with make -j check from the
userprog/ folder

• the tests will test your solutions for labs 1, 2, 4,
and 5. it's fairly common to have to �x something
in older labs

• if you want to run a single test, you can do the
following from userprog/:
make build/tests/userprog/halt.result

TDDE47/TDDE68 Dag Jönsson 2024-02-22 16

Testing

• tests/userprog/halt.c - The actual test program

• userprog/build/tests/userprog/halt.result -
Result only

• userprog/build/tests/userprog/halt.errors -
Errors, faulty output

• userprog/build/tests/userprog/halt.output -
Complete printout of the program run

1 Lab 5

wait

Input validation

Testing

2 Lab 6

File system

Hints

TDDE47/TDDE68 Dag Jönsson 2024-02-22 18

Overview

• Synchronise the �le system in Pintos

• Reader-writers problem

• Testing your implementation

TDDE47/TDDE68 Dag Jönsson 2024-02-22 19

File system

• You need to implement synchronisation for
accessing data in �les when they are shared
between multiple processes that are not already
synchronised

• Use locks and/or semaphores!

• You could synchronise the �lesystem by using one

lock for everything, this however will lead to
unacceptable performance

TDDE47/TDDE68 Dag Jönsson 2024-02-22 20

File system

• threads/malloc.[h|c] - Heap memory allocation
(shared, already synchronised)

• devices/block.[h|c] - Low-level operations on
the drive (shared, already synchronised)

• filesys/free-map.[h|c] - Operations on the map
of free disk sectors (shared)

• filesys/inode.[h|c] - Operations on inodes,
which represents an individual �le. When you
write/read data to/from an inode you modify the
actual physical �le (shared)

TDDE47/TDDE68 Dag Jönsson 2024-02-22 21

File system

• filesys/file.[h|c] - A �le object contains an
inode and things like seek position. Every process
has its own object (not shared)

• filesys/directory.[h|c] - Operations on
directories (parially shared)

• filesys/filesys.[h|c] - Operations on the �le
system, such as create, open, close, remove and so
on (shared)

TDDE47/TDDE68 Dag Jönsson 2024-02-22 22

Readers-writers

Some requirements:

• Several readers are able to read from the same �le
at the same time

• Only one writer can write to a speci�c �le at the
same time

• Several writers are able to write to di�erent �les at
the same time

• When a process is reading a �le, no other process
can write to that �le

• When a process is writing to a �le, no other process
can read from that �le

TDDE47/TDDE68 Dag Jönsson 2024-02-22 23

Readers-writers

• Reader-writers algorithms can achieve the
aforementioned requirements.

• Hint: Implementing a readers-preference is fairly
easy, but might lead to starving writers

• Hint: There is at most 1 inode per physical �le

TDDE47/TDDE68 Dag Jönsson 2024-02-22 24

Research lab example

• Imagine a research lab, where either research or
drop-in visits may happen

• Only one of the activites can be active at a time

• Outside of the lab there are a sign that indicates if
the room is occupied or not, and a counter of the
number of visitors in the room

• Design a simple protocol to enter the room based
on the signs. It should be visible at a glance if the
room is available for either activity

TDDE47/TDDE68 Dag Jönsson 2024-02-22 25

Hints

• Some questions you can ask yourself to help you
understand what needs to be done. What can
happen, in the worst case, if two processes try to...

� Create and remove the same �le at the same time?
� Read and write the same �le at the same time?
� Open the same �le at the same time?
� Open and close the same �le at the same time?
� And so on!

• "at the same time" should interpreted as the �rst
operation is interrupted by the second

Dag Jönsson
dag.jonsson@liu.se

www.liu.se

mailto:dag.jonsson@liu.se
www.liu.se

	Lab 5
	wait
	Input validation
	Testing

	Lab 6
	File system
	Hints

