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Doubly linked list

• Declared and defined in lib/kernel/list.[h|c]
• Store any kind of data, data retrieval via macro
• Well documented, if you want to try it out without

Pintos, just copy the files and use them as normal
• Do make an effort to understand how to use the list
• Remember: Do not reuse the elem structure

between different lists
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Hashtable

• Declared and defined in lib/kernel/hash.[h|c]
• Documented in the Pintos documentation, A.8
• Not necessary to use
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Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;

2. Increment the register by 1;
3. Store the value in the register in memory;
4. If of interest, return the value in the register

• Even an innocent looking line like ++i consists of
several instructions!
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Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register p1

2. Fetch i from memory to a register
3. Increment the register by 1
4. Store the value in the register in memory
5. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.
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Critical section

• A sequence of instructions, operating on shared
resources, that should be executed by a given
number of processes without interference. Also
known as mutual exclusion

• Concurrent accesses to shared resources can lead to
unexpected behaviours.

• Typical examples are data structures (e.g. lists),
network connections, shared variables, hard drives,
files, and so on
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Synchronisation primitives

To help us solve these problems, Pintos implements the
following primitives
• Locks
• Semaphores
• Conditions (also known as monitors)

Well documented in threads/synch.[h|c] and also in
Appendix A.3 in the Pintos documentation.
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Locks

• Two operations: acquire_lock and release_lock
• The same process that acquires the lock must also

release it.
• Ensures that at most one process executes a critical

section enclosed by the acquire and release of the
lock.

• As an example, in the i++ example earlier, p1
would have to finish before p2 could start
executing.

• Overzealous use of locks leads to poor utilisation of
concurrency, so do not lock more than absolutetly
necessary.
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Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }
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Semaphores

• A generalisation of locks
• sema_down and sema_up
• Not necessarily the same process doing sema_down

doing the sema_up
• You can set the number of processes that are

allowed to execute the critical section concurrently
• For locks, this is set to 1. With semaphores you

can set it to any other non-negative value.
• When the number is set to 0, any process calling
sema_down will immediately wait until some
process calls sema_up.
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Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }
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Interrupts

• Internal: Caused by CPU instructions, for
example system calls, page faults and so on.

• External: Caused by hardware devices outside the
CPU, for example timers, keyboards, disks and so
on. The function intr_disable() postpones the
handling of external interrupts, which in turn
causes internal interrupts to be postponed as well.

The interrupt infrastructure is documented within
Appendix A.4 in the Pintos documentation.
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Scheduler

• The scheduler handles process scheduling. In short,
it decides when every process gets to execute

• In operating systems, processes can get preempted
so that another process can execute for a while

• When to preempt is based on timer interrupts
• In Pintos, the scheduler preempts the running

process every 4th timer tick, and there are 100 ticks
per second
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Synchronisation II

• The synchronisation primitives in Pintos are
implemented by disabling interrupts

• When external interrupts are disabled, the
scheduler cannot preempt processes, thus no other
process can execute a critical section in the
primitives concurrently

• This is fairly crude, but it gets the job done within
Pintos
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Synchronisation II

Beware the following
• External interrupts are only disabled while you are

acquiring/releasing the lock or semaphore. In other
words, your critical section can still be preempted

• You can not use locks in the interrupt handler, read
the Pintos documentation A.4.3 for more details on
why

• Hint: You need to disable interrupts rather than
using locks when the interrupt handler can cause
race conditions (but use locks/semaphores
otherwise)
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Busy waiting

• Sometimes processes have to wait for something,
for example, acquire a lock or semaphore, or simply
wait for a number of ticks

• This is done by calling the timer_sleep, which
currently will call the thread_yield function,
which causes the caller to "give up" its timeslot on
the CPU.

• This is inreadibly inefficient, and it’s your task to
improve this!
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Lab 3: Files and functions

• devices/timer.[h|c]
• void timer_init()
• void timer_sleep(int64_t ticks)
• int64_t timer_ticks()
• int64_t timer_elapsed(int64_t)
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Lab 3: Hints

• The lab can be solved by using synchronisation
primitives

• The cleaner solution is to call thread_block() and
thread_unblock() directly. These are defined in
threads/thread.c

• You will need a list to keep track of sleeping
threads, make use of the Pintos list
lib/kernel/list.h

• Hint: To quickly check if there any threads to wake
up, keep the list sorted
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Lab 3: Testing

• Run make -j check from the threads/ folder
• An individual test can be run like this pintos run
alarm-single (Grab the names from the output
from make check).

• The tests will pass as it is, since busy-waiting is a
way to solve the problem, it’s just very inefficient.

• Remove any printf you’ve added during
debugging, otherwise you will never pass the tests,
since they check the output from Pintos.
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Lab 4: Overview

• Make it possible to spawn new processes from
another process

• Syscall exec - Start up a child process that
executes given file

• pid_t exec(const char *cmd_line)
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Lab 4: exec

• Spawn a new child process that loads the file. If
successfully loaded, return the process ID (PID) of
the child, -1 otherwise.

• The current implementation does not wait to see if
the child could be started. This is problematic.

• You need to make sure that the parent wait for the
child to actually start executing before moving on.
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Lab 4: exec flow
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Lab 4: exec

The following functions and lines of code are of interest
1 t id_t process_execute ( const char ∗cmd_line ) {
2 . . .
3 t i d = thread_create ( cmd_line , PRI_DEFAULT,
4 s tar t_process , cl_copy ) ;
5 . . .
6 }
7
8 t id_t thread_create ( const char ∗ name ,
9 i n t p r i o r i t y ,

10 thread_func ∗ funct ion , void ∗aux ) ;
11
12 s t a t i c void s ta r t_proce s s ( void ∗cmd_line_ ) ;



TDDE47/TDDE68 Dag Jönsson 2024-02-02 25

Lab 4: exec hints

• The only place where start_process is "called" is
in process_execute. Hence, you can change the
parameter of start_process (cmd_line_) and the
argument to thread_create (cl_copy) to
whatever you want (e.g. a pointer to a struct)

• You can assume that TID and PID are the same
thing within Pintos.

• Don’t need to store the relationship between
processes yet



Dag Jönsson
dag.jonsson@liu.se

www.liu.se

mailto:dag.jonsson@liu.se
www.liu.se

	Concepts
	Pintos data structures
	Synchronisation
	Synchronisation primitives
	Interrupts and Scheduler
	Synchronisation II

	Lab details
	Lab 3
	Lab 4


