
Concurrent programming
and Operating Systems
Lesson 2

Dag Jönsson

1 Concepts
Pintos data structures
Synchronisation
Synchronisation primitives
Interrupts and Scheduler
Synchronisation II

2 Lab details
Lab 3
Lab 4

TDDE47/TDDE68 Dag Jönsson 2024-02-02 2

Doubly linked list

• Declared and defined in lib/kernel/list.[h|c]
• Store any kind of data, data retrieval via macro
• Well documented, if you want to try it out without

Pintos, just copy the files and use them as normal
• Do make an effort to understand how to use the list
• Remember: Do not reuse the elem structure

between different lists

TDDE47/TDDE68 Dag Jönsson 2024-02-02 3

Hashtable

• Declared and defined in lib/kernel/hash.[h|c]
• Documented in the Pintos documentation, A.8
• Not necessary to use

TDDE47/TDDE68 Dag Jönsson 2024-02-02 4

Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;

2. Increment the register by 1;
3. Store the value in the register in memory;
4. If of interest, return the value in the register

• Even an innocent looking line like ++i consists of
several instructions!

TDDE47/TDDE68 Dag Jönsson 2024-02-02 4

Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;
2. Increment the register by 1;

3. Store the value in the register in memory;
4. If of interest, return the value in the register

• Even an innocent looking line like ++i consists of
several instructions!

TDDE47/TDDE68 Dag Jönsson 2024-02-02 4

Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;
2. Increment the register by 1;
3. Store the value in the register in memory;

4. If of interest, return the value in the register
• Even an innocent looking line like ++i consists of

several instructions!

TDDE47/TDDE68 Dag Jönsson 2024-02-02 4

Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;
2. Increment the register by 1;
3. Store the value in the register in memory;
4. If of interest, return the value in the register

• Even an innocent looking line like ++i consists of
several instructions!

TDDE47/TDDE68 Dag Jönsson 2024-02-02 4

Synchronisation

• What is it and why is it needed?
• Consider the following, simple, expression: ++i
• The expression, when compiled, does the following:

1. Fetch i from memory and store it in a register;
2. Increment the register by 1;
3. Store the value in the register in memory;
4. If of interest, return the value in the register

• Even an innocent looking line like ++i consists of
several instructions!

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register p1

2. Fetch i from memory to a register
3. Increment the register by 1
4. Store the value in the register in memory
5. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register p1 p2

2. Fetch i from memory to a register
3. Increment the register by 1
4. Store the value in the register in memory
5. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register
2. Increment the register by 1 p1 p2

3. Increment the register by 1
4. Store the value in the register in memory
5. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register
2. Increment the register by 1 p2

3. Store the value in the register in memory p1

4. Increment the register by 1
5. Store the value in the register in memory
6. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register
2. Increment the register by 1
3. Store the value in the register in memory p2

4. If of interest, return the value in the register p1

5. Store the value in the register in memory
6. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register
2. Increment the register by 1
3. Store the value in the register in memory
4. If of interest, return the value in the register p2

5. If of interest, return the value in the register
The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 5

Synchronisation

What can happen if two processes, p1 and p2, executes
++i at the same time?

1. Fetch i from memory to a register
2. Increment the register by 1
3. Store the value in the register in memory
4. If of interest, return the value in the register

The result will be that i increased by 1, not 2 that you
would expect.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 6

Critical section

• A sequence of instructions, operating on shared
resources, that should be executed by a given
number of processes without interference. Also
known as mutual exclusion

• Concurrent accesses to shared resources can lead to
unexpected behaviours.

• Typical examples are data structures (e.g. lists),
network connections, shared variables, hard drives,
files, and so on

TDDE47/TDDE68 Dag Jönsson 2024-02-02 7

Synchronisation primitives

To help us solve these problems, Pintos implements the
following primitives
• Locks
• Semaphores
• Conditions (also known as monitors)

Well documented in threads/synch.[h|c] and also in
Appendix A.3 in the Pintos documentation.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 8

Locks

• Two operations: acquire_lock and release_lock
• The same process that acquires the lock must also

release it.
• Ensures that at most one process executes a critical

section enclosed by the acquire and release of the
lock.

• As an example, in the i++ example earlier, p1
would have to finish before p2 could start
executing.

• Overzealous use of locks leads to poor utilisation of
concurrency, so do not lock more than absolutetly
necessary.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:5
• B:?

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:5
• B:6

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:6
• B:7:lock

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:6:waiting

• B:9:released

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:7:lock
• B:9

TDDE47/TDDE68 Dag Jönsson 2024-02-02 9

Lock example

1 int shared = 0;
2 struct lock lock;
3 init_lock (&lock);
4
5 int func() {
6 lock_acquire (&lock);
7 int ret = shared ++;
8 lock_release (&lock);
9 return ret;

10 }

• A:7:lock
• B:9

TDDE47/TDDE68 Dag Jönsson 2024-02-02 10

Semaphores

• A generalisation of locks
• sema_down and sema_up
• Not necessarily the same process doing sema_down

doing the sema_up
• You can set the number of processes that are

allowed to execute the critical section concurrently
• For locks, this is set to 1. With semaphores you

can set it to any other non-negative value.
• When the number is set to 0, any process calling
sema_down will immediately wait until some
process calls sema_up.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:10:waiting

• S:?

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:10:waiting

• S:6

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:10:waiting

• S:7:up(sema)

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:12:executing

• S:6:appending

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:13:work1

• S:7:up(sema)

TDDE47/TDDE68 Dag Jönsson 2024-02-02 11

Semaphore example

1 struct list msgs;
2 struct semaphore sema;
3 init_sema (&sema , 0);
4
5 void send(struct msg *msg) {
6 safe_append (&msgs , msg);
7 sema_up (&sema);
8 }
9 void recv() {

10 sema_down (&sema);
11 struct msg *msg =
12 safe_pop (&msgs);
13 handle_msg(msg)
14 }

• W:12:work2
• S:?

TDDE47/TDDE68 Dag Jönsson 2024-02-02 12

Interrupts

• Internal: Caused by CPU instructions, for
example system calls, page faults and so on.

• External: Caused by hardware devices outside the
CPU, for example timers, keyboards, disks and so
on. The function intr_disable() postpones the
handling of external interrupts, which in turn
causes internal interrupts to be postponed as well.

The interrupt infrastructure is documented within
Appendix A.4 in the Pintos documentation.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 13

Scheduler

• The scheduler handles process scheduling. In short,
it decides when every process gets to execute

• In operating systems, processes can get preempted
so that another process can execute for a while

• When to preempt is based on timer interrupts
• In Pintos, the scheduler preempts the running

process every 4th timer tick, and there are 100 ticks
per second

TDDE47/TDDE68 Dag Jönsson 2024-02-02 14

Synchronisation II

• The synchronisation primitives in Pintos are
implemented by disabling interrupts

• When external interrupts are disabled, the
scheduler cannot preempt processes, thus no other
process can execute a critical section in the
primitives concurrently

• This is fairly crude, but it gets the job done within
Pintos

TDDE47/TDDE68 Dag Jönsson 2024-02-02 15

Synchronisation II

Beware the following
• External interrupts are only disabled while you are

acquiring/releasing the lock or semaphore. In other
words, your critical section can still be preempted

• You can not use locks in the interrupt handler, read
the Pintos documentation A.4.3 for more details on
why

• Hint: You need to disable interrupts rather than
using locks when the interrupt handler can cause
race conditions (but use locks/semaphores
otherwise)

TDDE47/TDDE68 Dag Jönsson 2024-02-02 16

Busy waiting

• Sometimes processes have to wait for something,
for example, acquire a lock or semaphore, or simply
wait for a number of ticks

• This is done by calling the timer_sleep, which
currently will call the thread_yield function,
which causes the caller to "give up" its timeslot on
the CPU.

• This is inreadibly inefficient, and it’s your task to
improve this!

1 Concepts
Pintos data structures
Synchronisation
Synchronisation primitives
Interrupts and Scheduler
Synchronisation II

2 Lab details
Lab 3
Lab 4

TDDE47/TDDE68 Dag Jönsson 2024-02-02 18

Lab 3: Files and functions

• devices/timer.[h|c]
• void timer_init()
• void timer_sleep(int64_t ticks)
• int64_t timer_ticks()
• int64_t timer_elapsed(int64_t)

TDDE47/TDDE68 Dag Jönsson 2024-02-02 19

Lab 3: Hints

• The lab can be solved by using synchronisation
primitives

• The cleaner solution is to call thread_block() and
thread_unblock() directly. These are defined in
threads/thread.c

• You will need a list to keep track of sleeping
threads, make use of the Pintos list
lib/kernel/list.h

• Hint: To quickly check if there any threads to wake
up, keep the list sorted

TDDE47/TDDE68 Dag Jönsson 2024-02-02 20

Lab 3: Testing

• Run make -j check from the threads/ folder
• An individual test can be run like this pintos run
alarm-single (Grab the names from the output
from make check).

• The tests will pass as it is, since busy-waiting is a
way to solve the problem, it’s just very inefficient.

• Remove any printf you’ve added during
debugging, otherwise you will never pass the tests,
since they check the output from Pintos.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 21

Lab 4: Overview

• Make it possible to spawn new processes from
another process

• Syscall exec - Start up a child process that
executes given file

• pid_t exec(const char *cmd_line)

TDDE47/TDDE68 Dag Jönsson 2024-02-02 22

Lab 4: exec

• Spawn a new child process that loads the file. If
successfully loaded, return the process ID (PID) of
the child, -1 otherwise.

• The current implementation does not wait to see if
the child could be started. This is problematic.

• You need to make sure that the parent wait for the
child to actually start executing before moving on.

TDDE47/TDDE68 Dag Jönsson 2024-02-02 23

Lab 4: exec flow

TDDE47/TDDE68 Dag Jönsson 2024-02-02 24

Lab 4: exec

The following functions and lines of code are of interest
1 t id_t process_execute (const char ∗cmd_line) {
2 . . .
3 t i d = thread_create (cmd_line , PRI_DEFAULT,
4 s tar t_process , cl_copy) ;
5 . . .
6 }
7
8 t id_t thread_create (const char ∗ name ,
9 i n t p r i o r i t y ,

10 thread_func ∗ funct ion , void ∗aux) ;
11
12 s t a t i c void s ta r t_proce s s (void ∗cmd_line_) ;

TDDE47/TDDE68 Dag Jönsson 2024-02-02 25

Lab 4: exec hints

• The only place where start_process is "called" is
in process_execute. Hence, you can change the
parameter of start_process (cmd_line_) and the
argument to thread_create (cl_copy) to
whatever you want (e.g. a pointer to a struct)

• You can assume that TID and PID are the same
thing within Pintos.

• Don’t need to store the relationship between
processes yet

Dag Jönsson
dag.jonsson@liu.se

www.liu.se

mailto:dag.jonsson@liu.se
www.liu.se

	Concepts
	Pintos data structures
	Synchronisation
	Synchronisation primitives
	Interrupts and Scheduler
	Synchronisation II

	Lab details
	Lab 3
	Lab 4

