
Concurrent programming
and Operating Systems
Lesson 1

Dag Jönsson

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 2

WebReg

Deadline 2024-01-19

Use the Teams room if you haven’t found someone to
work with
Send me an email if you are unable to register!
dag.jonsson@liu.se

mailto:dag.jonsson@liu.se

TDDE47/TDDE68 Dag Jönsson 2024-01-18 3

Bonus

• If you have passed all labs by 2024-03-08 you get
3 bonus points on the exam

• Only available for students taking the course for
the first time

• Final hard deadline is 2023-03-26! Need to have
all pass in Webreg.

• Hand in through LiUs Gitlab

http://gitlab.liu.se

TDDE47/TDDE68 Dag Jönsson 2024-01-18 4

"Deadlines"

• Individual labs do not have deadlines
• "Soft deadlines", recommended pace

TDDE47/TDDE68 Dag Jönsson 2024-01-18 5

Demo and hand in

Oral examaniation after each assignment

After demonstration: make any corrections, commit,
branch, push, email

git checkout -b labX
git push --set-upstream origin labX
git checkout main # continue working on main

Note: origin might be something else for you, you can
just try a git push on the new branch to get some help

TDDE47/TDDE68 Dag Jönsson 2024-01-18 6

Pintos

• Labs are based on Pintos; an educational OS
developed at Standford University

• Written in C and is well documented
• Around 7 500 lines of code (LOC)
• The labs are about adding functionality to Pintos

TDDE47/TDDE68 Dag Jönsson 2024-01-18 7

Pintos

• Complication comes from reading and
understanding code

• Fairly small amount of actual code will be written
• Good understanding of C will save a lot of time

when debugging
• Need to work on the labs on non-scheduled time

as well
• There are preparatory questions in most labs, do

take the time to actually answer these

TDDE47/TDDE68 Dag Jönsson 2024-01-18 8

Pintos

• While working on the labs, prefer to use the Linux
machines on LiU

• A VM is available, (user and password: pintos)
(slightly out of date)

• Possible to to make it work on your own machine if
you use Linux (or WSL), but you need to figure out
the details

• Prefer to use a simple editor, i.e. emacs, vim or VS
Code

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 10

Lab 0

• Getting to know C and pointers
• Single linked list
• Setting up Pintos and git
• How to debug with GDB, both outside and inside

Pintos

TDDE47/TDDE68 Dag Jönsson 2024-01-18 11

Lab 1

• Implement argument passing to programs
• Setup of the stack for a userspace program

according to the x86 convention
• Requires solid understanding of memory layout and

pointer arithmetic
• Solutions are usually around 30-50 LOC

TDDE47/TDDE68 Dag Jönsson 2024-01-18 12

Lab 2

• Single user process
• First iteration of a system call handler
• 12 system calls to be implemented
• Afterwards, your OS should be able to:

• Read from and write to the console
• Create, remove, read from, and write to files
• Exit a process and halt the machine
• Sleep a process for given amount of time

• Usually takes a bit of time since you need to
familiarize yourself with the file structure

• Solutions are usually around 160-200 LOC

TDDE47/TDDE68 Dag Jönsson 2024-01-18 13

Lab 3

• Multiple system threads
• Synchronisation is now required
• This lab usually takes the least amount of time
• Solutions are usually around 40-60 LOC

TDDE47/TDDE68 Dag Jönsson 2024-01-18 14

Lab 4

• Multiple user processes
• Another system call to implement: exec
• exec allows a process start the execution of child

processes
• Solutions are usually around 50-100 LOC

TDDE47/TDDE68 Dag Jönsson 2024-01-18 15

Lab 5

• Multiple user processes
• Implement yet another system call: wait
• wait: Let a process wait for one of the children to

finish executing
• Create parent-child relationship
• Validation of arguments given by the user
• Solutions are usually around 50-70 LOC

TDDE47/TDDE68 Dag Jönsson 2024-01-18 16

Lab 6

• Multiple processes
• Synchronisation of the filesystem
• Make sure that no order of system calls, or internal

calls, leads to an invalid state (open, close, write,
read, and so on)

• Tends to take about as much time as lab 2
• Solutions are usually around 40-50 LOC

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 18

Lab 0: Introductionary

Linked list is a simple data structure to dynamically
store data

1 struct Node {
2 int data;
3 struct Node* next;
4 }

next next
NULL

TDDE47/TDDE68 Dag Jönsson 2024-01-18 19

GDB

• Small problems to practice the basics of debugging
• Not exhaustive, only introductionary

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 21

Memory layout

• Memory is split between kernel and userspace
• Userspace is from address 0 up to PHYS_BASE

(0xc0000000)
• Kernel space occupies the rest, 1 GB of memory

reserved
• Userspace programs may not write or read from

kernel space

TDDE47/TDDE68 Dag Jönsson 2024-01-18 22

The stack

• Every program has it’s own stack (slice of the total
user space)

• Arguments when calling programs are pushed on
the stack by the OS

• Certain rules to follow (calling convention)

TDDE47/TDDE68 Dag Jönsson 2024-01-18 23

The stack

Suppose we run binary -s 17 The parameters of the
main function of the C progam are int argc and char
**argv. So in this example:

1 argc = 3
2 argv [0] = "binary \0"
3 argv [1] = "−s \0"
4 argv [2] = "17\0"
5 argv [3] = NULL

TDDE47/TDDE68 Dag Jönsson 2024-01-18 24

The stack

•
Every time you do a
function call, a stack
frame is created:

Parameters
Return address
Local variables

Growth

direction

• The main function is never really called, but the
layout is the same

• The parameters and the return address of the stack
frame are pushed onto the stack by the operating
system

TDDE47/TDDE68 Dag Jönsson 2024-01-18 25

The stack

Figure: Argument passing details

TDDE47/TDDE68 Dag Jönsson 2024-01-18 26

Interrupts

• Two kinds of interrupts, software and hardware
• Software interrupts: triggered by software, often to

get the kernel to do something (system calls)
• Sometimes called "internal interrupt"
• Interrupt frame: A snapshot of the process state at

the time of the interrupt

TDDE47/TDDE68 Dag Jönsson 2024-01-18 27

Interupt frame

• Declared in threads/interrupt.h
• Contains the values that were in the CPU registers

at time of interrupt
• Registers of interest for you:

• esp - The stack pointer
• eax - Return register

TDDE47/TDDE68 Dag Jönsson 2024-01-18 28

Pintos boot

• Boot process is defined in threads/init.c
• Initializes submodules (threads, memory, file

system etc.)
• Executes any given user program with
process_execute(), defined in
userprog/process.c

TDDE47/TDDE68 Dag Jönsson 2024-01-18 29

process_execute(), start_process()

• Creates a thread for the new process
• Hands over execution to new thread with
start_process()

• start_process() allocates memory in user space,
load the binary, create an empty stack, and if
successful, hand the execution over to userspace

• Difference between thread and process in Pintos?

TDDE47/TDDE68 Dag Jönsson 2024-01-18 30

thread struct

• Declared in threads/thread.h
• Well documented in the source files
• Used to keep track of kernel resources allocated to

a thread/process
• Used throughout the lab series

TDDE47/TDDE68 Dag Jönsson 2024-01-18 31

File descriptors (FD)

• A FD is a non-negative integer that represents
abstract input/output resources

• Input/output resources are, for example, files,
consoles, network sockets and so on

• The user processes only knows about FDs, and the
OS knows what concrete resoure it represents

• In Pintos, FD 0 and 1 are reserverd for stdin and
stdout

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 33

Lab 1: Command line

• Currently, Pintos does not support arguments to
programs

• Implement the necessary code to make sure the
arguments are passed on correcly

• First steps: Familarize yourself with how
start_process() works

TDDE47/TDDE68 Dag Jönsson 2024-01-18 34

Lab 1: String tokenization

• You get a string, such as "binary -s 17\0", and you
need to split it up in smaller parts.
Helpful functions found in lib/string.[c|h]
char* strtok_r(char *, const char *, char **)
void* memcpy(void*, const void*, size_t)

• Read the comment above the definition for an
example of usage.

• After strtok_r is run on the string, it will look
like: "binary\0-s\017\0"

• You need to save a pointer to every word!
• Read the Pintos documentation 3.5 for another

description

TDDE47/TDDE68 Dag Jönsson 2024-01-18 35

Lab 1: Command line

"Where should our code go?" - What function within
process.c has access to both the stack pointer and the
*cmd_line? And when is the stack actually available?

Hint: start_process() creates an interrupt frame
which holds a pointer to the newly created stack

Remember, double pointer needs to be dereferenced
twice to read/write the value pointed at, dereference
once to access the pointer to the value.

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 37

Lab 2: Syscalls

• There is only one user process at a time - no
concurrency.

• Suppose a user process want to open a file, then it:
Already implemented!
1. Calls the function int open(const char *file)
2. The function open puts the arguments on the

stack, together with the syscall number.
3. Produces an interrupt to switch from user mode to

kernel mode
4. The interrupt handler then looks at the interrupt

number, and delegates it to the appropriate
subhandler, in this case, the syscall handler

TDDE47/TDDE68 Dag Jönsson 2024-01-18 38

lib/user/syscall.[h|c] - The syscall wrapper
1
2 /∗ Invokes s y s c a l l NUMBER, pass ing no
3 arguments , and re tu rns
4 the return value as an ` i n t ' . ∗/
5 #de f i n e s y s c a l l 1 (NUMBER)
6 ({
7 i n t r e t v a l ;
8 asm v o l a t i l e (" pushl %[number] ;
9 i n t $0x30 ; addl $4 , %%esp"

10 : "=a" (r e t v a l)
11 : [number] " i " (NUMBER)
12 : "memory") ;
13 r e t v a l ;
14 })
15
16 i n t open (const char ∗ f i l e) {
17 re turn s y s c a l l 1 (SYS_OPEN, f i l e) ;
18 }

TDDE47/TDDE68 Dag Jönsson 2024-01-18 39

This is what you need to implement
• The syscall handler then (in kernel mode) does

1. Reads the syscall number to decide what syscall
was made (write, read, open, and so on)

2. Based on what syscall was made, the handler reads
the correct number of arguments from the stack,
and then performs the syscall

• The handler does not get the arguments for the
syscall directly, but it has to extract them from the
stack: f->esp

• Note that some arguments are just pointers, strings
for example are passed as pointers to the first
character of the string.

• If the syscall is expected to return some value, this
needs to be stored in the f->eax register.

TDDE47/TDDE68 Dag Jönsson 2024-01-18 40

Files that should be studied:
• lib/user/syscall.[h|c] - The syscall wrapper
• lib/syscall-nr.h - Syscall numbers
• threads/interrupt.[h|c] - Important structures
• filesys/filesys.[h|c] - Pintos file system

Files that should be modified:
• userprog/syscall.[h|c] - Implement syscall

handler here
• userprog/process.[h|c] - If you need to clean

anything up when a process is shutting down
• threads/thread.[h|c] - Expand current

structures if needed

TDDE47/TDDE68 Dag Jönsson 2024-01-18 41

• Currently, the syscall handler kills every calling
process

• The handler must do the things that we discuess
earlier

• f->esp is the stack of the calling process
• The syscall number is at the top, after that are the

arguments, if any
• Every syscall has its own syscall number: use it to

decide the number of arguments
• Pintos currently doesn’t implement FDs, you need

to figure out a strategy

TDDE47/TDDE68 Dag Jönsson 2024-01-18 42

Some things to keep in mind when working on the lab
• Pretty much all functionality is already

implemented, you task is putting it together
• Every user process should be able to have at least

128 files open at the same time
• It’s dangerous to assume that the arguments are

valid! Example of things you need to handle:
• Given FD is not associated with any file
• Invalid buffer size (for example -1)
• Too many files opened

• You do not need to validate pointers yet! This will
be revisited in lab 5.

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 44

FAQ

• Use thread_current() to get the thread struct for
the calling process.

• The functions filesys_open(char *) opens a file,
and the function file_close(file *) closes it

• The function init_thread(...) initialises every
thread, while the function thread_init(...)
initialises the thread module (once, when Pintos
starts up). If you need to do some initialisation for
every thread, modify the former function.

TDDE47/TDDE68 Dag Jönsson 2024-01-18 45

• Run lab2test to test your solution. It will
• Create files
• Open files
• Read and write from the console
• Try to use bad FDs

• If you want to rerun the test, remove any files
created by the test first
pintos -- rm test0 rm test1 rm test2

• Passing lab2test does NOT mean that you have
finished the lab. You must ensure that there are no
special cases

• Your implementation will be tested more
thoroughly in lab 5

TDDE47/TDDE68 Dag Jönsson 2024-01-18 46

• In total, you will implement 14 system calls
• Linux has around 460 system calls, depending on

architecture
• Windows has more than 2000 system calls

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0
4 Concepts

Memory layout
The stack
Interrupts
Pintos boot
File descriptors

5 Lab 1
6 Lab 2
7 FAQ
8 Debugging

TDDE47/TDDE68 Dag Jönsson 2024-01-18 48

Debugging

• Read Appendix E: Debugging tools in the Pintos
documentation

• If you get "Kernel Panic", then try the backtrace
tool

• free sets the bytes to 0xcc: If you see these values,
then something likely freed the memory

• Commit often! It’s fairly common to accidently
break Pintos in obscure ways, and often it’s easier
to just revert back to a working version and redo
the changes.

TDDE47/TDDE68 Dag Jönsson 2024-01-18 49

If you get something like this:
Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

Then type this (when standing in the build folder):
backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8}

You should get something like this:
0xc0106eff: debug_panic (lib/debug.c:86)
0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)

Dag Jönsson
dag.jonsson@liu.se

www.liu.se

mailto:dag.jonsson@liu.se
www.liu.se

	Introduction
	Administration
	General Information
	Pintos

	Overview of the labs
	Lab 0
	Concepts
	Memory layout
	The stack
	Interrupts
	Pintos boot
	File descriptors

	Lab 1
	Lab 2
	FAQ
	Debugging

