
  

TDDE68 + TDDE47

Lecture 3: 
Processes, Threads and File Systems (I)

Klas Arvidsson

Based on slides by Mikael Asplund and Adrian Pop

Thanks to Christoph Kessler and Simin Nadjm-Tehrani for some of the material behind these slides.



  

Today's lecture

● Processes 
– Concepts

– Creation, switching and termination

● Threads
● Process interaction

– 2 slide introduction

● File Systems (I)
– Introduction 



  

Reading guidelines

● Silberschatz et al. (10th ed.)
– Chapter 3.1-3.4, 4.1-4.3, 4.5, 13.1, 14.1-2



Concurrent Programs

A sequential program has a 
single thread of control.

A concurrent program has 
multiple threads of control 
allowing it perform multiple 
computations “in parallel” and to 
control multiple external activities 
which occur at the same time. 

[Magee and Kramer 2006]



 Related terms 
● Concurrent programs ● Define actions that may be performed 

simultaneously

● Parallel programs ● A concurrent program that is designed 
for execution on parallel hardware

● Distributed programs ● Parallel programs designed to run on 
network of autonomous processors that 
do not share memory



Concurrency on a single core CPU

● Concurrency can be achieved through 
preemptive multitasking

● Let each program run for a short while and 
then switch to the next one

● Improvement over the ”multiprogramming” 
paradigm



The abstract notion of Process

• An abstraction in computer science used for 
describing program execution and 
potential parallelism

• What other abstractions do you know?
– Functions
– Classes, Objects, Methods

• Processes emphasise the run-time 
behaviour



Typical OS terminology:

A process is a program in execution 
with its own memory



Example processes

Operating System (kernel)

Terminal File manager

Window
manager

Browser



Process management is one of the key tasks of 
an operating system.



Process in Memory



Process Control Block  (PCB)

Information associated with each process
● Process Identifier (PID)
● Process state
● CPU registers
● Program counter
● CPU scheduling information
● Memory-management information
● Accounting information
● I/O status information



Process representation in Linux
https://github.com/torvalds/linux/blob/master/include/linux/sched.h

https://github.com/torvalds/linux/blob/master/include/linux/sched.h


Diagram of Process State

Ready Running

New

Waiting

Terminatedadmitted
preemption

exit

scheduler dispatch

I/O call
completion 
of I/O call



Diagram of Process State

Ready Running

New

Waiting

Terminatedadmitted
preemption

exit

scheduler dispatch

I/O call
completion 
of I/O call

Process creation



Process Creation

Parent

Child

Parent

Before fork After fork

Same as before

Copy of parent



Unix example

● fork() system call creates new process
● exec() system call used after a fork() to replace 

the process’ memory space with a new program



More on fork

● fork returns the process id of the child process
– This is the only way for a process to know if it is the 

parent or child after a fork

int pid = 0;

pid = fork();

// for child: pid == 0, for parent: pid == <child 
process id>

● In Pintos fork is integrated in exec (not in 
normal Unix)



Poll question

int main(void) {

  int pid1 = 0;

  pid1 = fork();

  if (pid1 == 0) {

    printf("Hello\n");

  }

  int pid2 = fork();

  printf("Hello\n");

  sleep(1);

  return 0;

}

How many times will 
the program output 
the line ”Hello”?

URL: 
https://www.menti.com
Code: 8619 0811

https://www.menti.com/


Diagram of Process State

Ready Running

New

Waiting

Terminatedadmitted
preemption

exit

scheduler dispatch

I/O call
completion 
of I/O call

Switching between processes



Context Switch
● Consider a program has several processes 

P1, …, P4
● An execution of the concurrent program may 

look like:

time

P1

P4

P3

P2

Context switch





Diagram of Process State

Ready Running

New

Waiting

Terminatedadmitted
preemption

exit

scheduler dispatch

I/O call
completion 
of I/O call

waiting...



What are processes typically doing?



Process queues



For every reason to wait there is a queue. 
And then there is the ready queue.



Diagram of Process State

Ready Running

New

Waiting

Terminatedadmitted
preemption

exit

scheduler dispatch

I/O call
completion 
of I/O call



Process termination

● Exit a process by calling exit(EXIT_SUCCESS)
– (same as return 0)

● OS able to free resources
– Take back memory, close open files, etc

– All of it? No!



Parents must care for their children

● Using processes to run a task in the 
background:

pid_t pid = fork();

if (pid == 0) { // This is run by the child

    // Do something useful

} else { // This is run by the parent

    // Continue with own stuff

    int status;

    wait(&status) // Wait until child is done

}

● The OS must manage the interaction between 
parent and child!



What happens if 

● The parent does not call wait?
– The finished child becomes a zombie process

● The parent terminates before the child?
– The child becomes an orphan process (can be 

adopted by the init process)



Threads



Single- and Multithreaded 
Processes



Benefits of Multithreading
● Responsiveness

– Interactive application can continue even when part of 
it is blocked

● Resource Sharing
– Threads of a process share its memory by default.

● Economy
– Light-weight

– Creation, management, context switching for threads 
is much faster than for processes

● E.g. Solaris: creation 30x, switching 5x faster

● Utilization of multicore architectures



Multi-core architectures
● Necessitated by the end of Moore’s Law

– We can no longer keep making chips smaller (and 
thereby faster)

● Problem: Amdahl’s Law...



Multi-core architectures

Speedup=1/((S+(1-S)/cores)
S=sequential fraction of code



Different perspectives on threads

Kernel spaceUser space

?
User-level 
threads: 
pieces of 
code that 
appear to be 
running 
concurrently

Kernel-level 
threads: 
entities 
managed by 
the scheduler 
in the kernel

Can be provided by
Runtime environment of 
programming language
Special libraries
Operating system



Kernel-level threads
≠

Kernel threads



Mapping from user to kernel

Kernel-level threadsUser-level threads

Alternatives:

Many-to-One  (M:1)

One-to-One  (1:1)

Many-to-Many  (M:N)



Many-to-One
● Many user-level threads 

mapped to single kernel 
thread

 Low overhead, very portable

 Not scalable to  
multiprocessors, does not 
handle blocking calls well

● Example:
– GNU Portable Threads

User-level Kernel-level



One-to-One
● Each user-level thread maps to one kernel 

thread

  more concurrency;  scalable to 
multiprocessors

  overhead of creating a kernel thread for each 
user thread

● Examples
– Windows 

– Unix

User-level Kernel-level



Many-to-Many Model

● Allows many user level threads to be mapped to 
many kernel threads

● Allows the OS to create a sufficient number of 
kernel threads

● Abandoned by most OS:s
– But used by threading libraries

– Android, Java, ..
User-level Kernel-level

Thread pool



Java example



Implicit threading
● Growing in popularity as numbers of threads increase, 

program correctness more difficult with explicit 
threads

● Creation and management of threads done by 
compilers and run-time libraries rather than 
programmers

● Examples
– Thread Pools (Android, Grand Central Dispatch)
– Fork-Join (cf. MapReduce)
– OpenMP
– Execution policies (C++)



Process interaction



Inter-process communication (IPC)
● Two modes:

– Shared variables 

– Message passing

Process A

Process B

Kernel

Shared

Process A

Process B

Kernel



Message passing model

● Resembles a distributed system

● Benefits
– Clean separation of data

– Easy to distribute across multiple computers

– Low risk of data corruption

● Drawbacks
– Distributed algorithms are difficult to construct

– Might result in bad performance



File systems (I)



48

File system consists of 
interface + implementation



49

Storing data
● Primary memory is volatile

– need secondary storage for long-term storage

● A disk is essentially a linear sequence of 
numbered blocks
– With 2 operations: write block b, read block b
– Low level of abstraction



50

The file abstraction
● Provided by the OS
● Smallest allotment of secondary storage 

known to the user
– Typically, contiguous logical address space

● Organized in a directory of files
● Has 

– Attributes   (Name, id, size, …)
– API  (operations on files and directories)



51

Meta data
● File attributes – name, date of creation, 

protection info, ...

● Such information about files (i.e., meta-data)
is kept in a directory structure, 
which is maintained on the disk.

● Stored in a File Control Block (FCB) data 
structure for each file



52

Open in Unix:
open ( ”filename”, ”mode” )

returns a file descriptor / handle = index into a per-process     

   table of open files (part of PCB) 

(or an error code)



53

File descriptors and open file tables

FCB

stdin (pos, …)

stdout (pos, …)

stderr (pos,…)

newfile(pos,…)

Console input

Console output

newfile (loc.,…)
    FCB contents

System-wide
open file table

Process-local
open file table

Process-local
open file table

KERNEL MEMORY SPACE

stdin (pos, …)

stdout (pos, …)

stderr (pos,…)

0

d

1

2

0

1

2

Process 1
Logical 
Address
Space

Process 2
Logical 
Address
Space

Disk

File
data

FILE data
structure

stdin, stdout, 
stderr are 
opened upon 
process start

returned by
fopen() C
library call



54

Storing open file data
● Collected in a system-wide table of open files

and process-local open file tables (part of 
PCB)

● Process-local open file table entries point to 
system-wide open file table entries

● Semantics of fork()? 



55

Directory Structure
● Files in a system organised in directories

– A collection of nodes containing information about 
all files

● Both the directory structure and the files reside 
on disk.

F 1 F 2 F 3
F 4

F n

Directory

Files



56

Tree-Structured Directories



57

Acyclic-Graph Directories



58

Links
● Hard links

– Direct pointer (block address) to a directory or file

– Cannot span partition boundaries

– Need be updated when file moves on disk

● Soft links  (symbolic links, ”shortcut”, ”alias”)
– files containing the actual (full) file name

– still valid if file moves on disk

– no longer valid if file name (or path) changes

– not as efficient as hard links (one extra block read)



59

Examples of File-system 
Organization



60

File System Mounting
● A file system must be mounted before it can 

be accessed
● Mounting combines multiple file systems in 

one namespace
● An unmounted file system is mounted at a 

mount point
● In Windows, mount points are given names C:, 

D:, …



61

File Sharing
● Sharing of files on multi-user systems is 

desirable
● Sharing may be done through a protection 

scheme
● In order to have a protection scheme, the 

system should have
– User IDs - identify users, 

allowing permissions and protections to be per-
user

– Group IDs - allow users to be in groups, 
permitting group access rights



62

Sharing across a network
● Distributed system

● Network File System (NFS) is a common 
distributed file-sharing method

● SMB (Windows shares) is another

● Protection is a challenge!



What’s next

● Next lecture: Lecture 4
– Scheduling processes and tasks (good to know for 

Lab3 - suspended timer_sleep impl.)

– Reading:  Ch. 5.1-5.5, 5.8 

● Lecture 5: Synchronization, tools to manage 
data sharing between multiple processes


	Sida 1
	Sida 2
	Sida 3
	Slide133
	Slide135
	Sida 6
	Slide132
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Process Control Block (PCB)
	Sida 13
	Slide173
	Sida 15
	Sida 16
	Slide175
	Sida 18
	Sida 19
	Sida 20
	Slide104
	CPU Switch From Process to Process
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Single- and Multithreaded Processes
	Benefits of Multithreading
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Many-to-One
	One-to-One
	Many-to-Many Model
	Sida 42
	Sida 43
	Sida 44
	Slide124
	Sida 46
	Sida 47
	Sida 48
	File Concept
	Sida 50
	Sida 51
	Sida 52
	File descriptors and open file tables
	Sida 54
	Directory Structure
	Tree-Structured Directories
	Acyclic-Graph Directories
	Hard links vs. Soft links (2)
	A Typical File-system Organization
	Sida 60
	File Sharing
	Sida 62
	Sida 63

