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Outline

● Intro and basic principles in C
● Data types and variable definition/declaration
● Structures and arrays
● Pointers
● Storage classes and memory allocation
● Debugging
● Briefly about linking and loading



  

A bit of history



  

1965-1970



  

Unix

● More straightforward than Multics

● Early 1970's

● Originally implemented in assembly

● Needed a programming language



  

C programming language

● Successor of B, variant of BCPL

● Book 1978 by Brian W. Kernighan and Dennis 
M. Ritchie (”K&R-C”)

● 1989 ANSI standard

● Latest standard: C17



  

Basic principles

● Imperative

● Typed

● Medium abstraction level

● Structure
– Flexible
– Typically functionality-oriented



File relationships

glob.h

mymain.c def.cabc.c

stdio.h

preprocess #include
#include

abc.o mymain.o def.o

compile 

mymain   (executable)

link

libc.a

C run-time library is linked 
with the user code

.o

.c



A first program



Compiling C Programs
● Example:  GNU C Compiler:  gcc  (Open Source)
● One command calls preprocessor, compiler, assembler, linker
● Single module:  Compile and link (build executable):

– gcc mymain.c                                     executable: a.out
– gcc –o myprog mymain.c                   rename executable

● Multiple modules:  Compile and link separately
– gcc –c –o mymain.o mymain.c          compiler only
– gcc –c –o other.o other.c                   compiles other.c
– gcc other.o mymain.o                        call the linker, -> a.out

● make  (e.g. GNU gmake)
– automates building process for several modules

● Check the man pages!



Data types in C
● Primitive types

– int, char, etc.

● Composite data types
– arrays
– structures - struct
– unions

● Programmer can define new type names with typedef



Primitive data types
● Integral types:  char, short, int, long, enum

– can be signed or unsigned,  e.g.   unsigned int counter;
– sizes are implementation dependent (compiler/platform)
– use  sizeof( datatype ) operator to write portable code

● Floating point types:  float,  double,  long double

● Pointers



Constants and Enumerations
● Constant variables:

const int red = 2; 
const int blue = 4;
const int green = 5;
const int yellow = 6;

● Enumerations:
enum { red = 2, blue = 4, green, yellow }  color;

color = green;       // expanded by compiler to:  color = 5;

● With the preprocessor:
– symbolic names, textually expanded before compilation

#define RED 2
...                                                                        

● In C, constants are often capitalized:  RED, BLUE, ...

 No ”=” or ”;”



Variable declaration/definition

/* Comment: declaration of

   globally visible functions

   and variables: */

extern int incr( int );

extern int initval;

#include ”glob.h”

// definition of var. initval:

int initval = 17;

// definition of func. incr:

int incr( int k )

{

  return k+1;

}

#include <stdio.h>

#include ”glob.h”

int counter;  // locally def.

void main( void )

{

  counter = initval;

  printf(“new counter: %d”,
            incr( counter ) );

}

glob.h abc.c mymain.c

Note the difference:
Declarations announce
signatures (names+types).
Definitions declare (if 
not already done) AND
allocate memory.
Header files should usually 
never contain definitions!



More on composite data types



Structures - struct



● Unions implement variant records
– all attributes share the same storage

● Unions break type safety

● If handled with care, useful in low-level 
programming

Unions



Arrays



int a[20];

int b[] = { 3, 6, 8, 4, 3 };

icplx c[4];

float matrix [3] [4];

Array declaration/definition



● Addressing: ty a[size];
Location of element a[i]  starts at:   
     (address of a)  +  i * elsize
where elsize is the element size in bytes - sizeof(ty)

● Uses:
a[3] = 1234567;
a[21] = 345;     // ??,  there is no array bound checking in 
C
c[1].re = c[2].im;

● Arrays are just a different view of pointers

Array addressing and access



Pointer: type + address



The * symbol

● The * symbol has four separate uses:
– Used for declaration/definition of a pointer:

int *px;

int **py;

– Used to dereference a pointer (get the value the pointer is pointing to):
*px = 5;

int b = **py;

– Multiplication: 
a = 3 * 4;
a *= 4;

– In comments:

/* this is a comment */



The & symbol

● The & symbol has three separate uses:
– Getting the address of a variable:

int *p = &a;

– Bitwise and:

unsigned int x = y & z;
y &= z;

– Logical and:

if (a && b) {
...



Pointer arithmetics



Pointer arithmetics
● Integral values can be added to / subtracted from pointers:

ty *q = p + 7;  
// new value of q is (value of p) + 7 * sizeof(pointee-type of p: ty)

● Arrays are simply constant pointers to their first element:
– Notation  b[3]  is ”syntactic sugar” for  *(b + 3)
– b[0]  is the same as  *b

● A pointer can be subtracted from another pointer:
– unsigned int offset = q – p;

3 6 8 4 3b:



Pointers and structs
● struct My_IComplex { int re; int im; } c, *p;

p = &c;
– p is a pointer to a struct

● p->re  is shorthand for  (*p).re
– Example:  as p points to c,  &(p->re) is the same as &(c.re)
– Example:  elem->next = NULL;

c.re

c.im

0xafb024
0xafb024

c:p:



Why do we need pointers in C?
● Defining recursive data structures (lists, trees, ...)

● Argument passing to functions
– simulates reference parameters – missing in C  (not C++)

● void foo ( int *p ) { *p = 17; }            Call:  foo ( &i );

● Arrays are pointers
– Handle to access dynamically allocated arrays
– A 2D array is an array of pointers to arrays:

● int m[3][4];   // m[2] is a pointer to start of third row of m

● For representing strings – missing in C as basic data type
– char *s = ”hello”;  // s points to char-array {’h’,’e’,’l’,’l’,’o’, 0 }

● For dirty hacks  (low-level manipulation of data)



Pointer type casting



Pointer type casting
● Pointer types can be casted to other pointer types

– int i = 1147114711;
int *pi = &i;
printf ( ”%f\n”,  * ( (float *) pi ) );      // prints 894.325623

– All pointers have the same size (1 address word)
– But no conversion of the pointed data!   (cf. unions)

● Compare this to:     printf( ”%f\n”,  (float) i );

– A source of type unsafety, 
but often needed in low-level programming

● Generic pointer type:    void *
– Pointee type is undefined    
– Always requires a pointer type cast before dereferencing



Pointers to functions (1)
● Function declaration

– int f( float );

● Function call:    f( x )
– f is actually a (constant) pointer 

to the first instruction of function f in program memory
– Call f( x )   dereferences pointer f 

● push argument x; save PC and other reg’s; PC := f; 

● Function pointer variable
– int (*pf)(float);     // pf is a pointer to a function 

                            //   that takes a float and returns an int
– pf = f;   // pf now contains start address of f
– pf( x );  // or (*pf)(x)  dereferencing (call):  same effect as f(x)



Pointers to functions (2)
● Most frequent use:  generic functions and callbacks

● Example:  Ordinary sort routine
– void bubble_sort( int arr[], int asize ) 

{  int i, j;
   for (i=0; I < asize-1; i++) 
      for (j=i+1; j < asize; j++)
          if ( arr[i]   >   arr[j] )
             ...  // interchange arr[i] and arr[j]
}

– Need to rewrite this for sorting in a different order?
– Idea:  Make bubble_sort generic in the compare function



Pointers to functions (3)
● Most frequent use:  generic functions and callbacks

● Example:  Generic sort routine
– void bubble_sort( int arr[], int asize, int (*cmp)(int,int) ) 

{  int i, j;
   for (i=0; I < asize-1; i++) 
      for (j=i+1; j < asize; j++)
          if ( cmp ( arr[i] , arr[j] ) )
             ...  // interchange arr[i] and arr[j]
}

– int gt ( int a, int b )  {  if (a > b)  return 1; else return 0; }
– bubble_sort ( somearray, 100, gt );

bubble_sort ( otherarray, 200, lt );



Run-Time Memory Organization

Stack
• Automatic variables  
• allocated on the run-time stack 
at function call and removed on 
return

• indexed by frame pointer (or 
stack pointer)

(OS Kernel
 data and code)

Stack frame for 
initial call to main

fp

sp
fp+4:  some local var. of main

Memory space for 
this user program Addr. 0:

NB: This is a simplification.

.data segment 
● Global and static variables
● Indexed by absolute address 

(or globals pointer)

_y: .double 9
_x: .space 4
...

_main:
... (code for main)
_foo:
... (code for foo)...

.text segment

• Compiled program code

• Copied in by loader
• branch target addresses: 

by absolute address or PC-
relative

Stack limit

Heap limit Heap
• Dynamically allocated objects
• indexed via pointer variables

fp

fp+8: Space for local var. t
Stack frame for current 
function foo called from main

sp



Storage classes in C
● Automatic variables

● Global variables

● Static variables



Automatic variables
● Local variables and formal parameters of a function
● Exist once per call
● Visible only within that function (and function call)
● Space allocated automatically on the function’s stack frame
● Live only as long as the function executes

  

int *foo ( void )    // function returning a pointer to an int.

{

   int t = 3;     // local variable

   return &t;   // ??  t is (sort of) deallocated on return from foo,

   // so its address should not make sense to the caller...

}



Global variables
● Actually a misnomer, should be called extern 

storage class

● Declared and defined outside any function
extern int y; // y seen from all modules; only declaration

int y = 9; // only 1 definition of y for all modules seeing y

● Space allocated automatically when the 
program is loaded



Static variables
● static int counter; 

● Allocated once for this module  (i.e., not on the 
stack) even if declared within a function!

● Value will survive function return: next call 
sees it



Dynamic memory



Dynamic allocation of memory in C
● malloc( N )  

– allocates a block of N bytes on the heap
– and returns a generic (void *) pointer to it;
– this pointer can be type-casted to the expected pointer type
– Example:     icplx *p = (icplx *) malloc ( sizeof ( icplx ));

● free( p ) 
– deallocates the heap memory block pointed to by p

● Can be used e.g. for simulating dynamic arrays:
– Recall: arrays are pointers
– int *a = (int *) malloc ( k * sizeof( int ) );        a[3] = 17;



● Type conversions and casting
● Bit-level operations
● Operator precedence order
● Variadic functions  

(with a variable number of arguments, e.g. printf() )
● C standard library
● C preprocessor macros
● I/O in C  
● ...

C:  There is much more to say...



Debugging



Linking and loading



File relationships

glob.h

mymain.c def.cabc.c

stdio.h

preprocess #include
#include

abc.o mymain.o def.o

compile 

mymain   (executable)

link

libc.a

C run-time library is linked 
with the user code

.o

.c



Lifetime of a program

● Compiling: source code → object code

● Linking: object code module(s) → executable

● Loading: executable on disk → program in 
main memory



How to relocate code?

Symbolic 
addressing:

…

Definition of data X

…

If (X) goto P

…

P: …

Relative 
addressing:

0: …

1: Space for data

2: …

3: If (*1) goto 5

4: …

5: …

Absolute addressing:

243: …

244: Space for data

245: …

246: If (*244) goto 248

247: …

248: …

Relocation table:
 - line 3, patch base+1
 - line 3, patch base+5

as loading



Linking Multiple Modules  (1)

● Compiler (-c) created an (object) module file  (.o, .bin)
– Binary format, e.g. COFF (UNIX), ELF (Linux)
– Non-executable (yet)
– Segments for code, global data, stack / heap space
– List of global symbols  (e.g., functions, extern variables)
– Addresses in each segment start at 0
– Relocation table: 

List of addresses/instructions that the linker must patch 
when changing the start address of the module

● Static relocation  (at compile/link time):
Merge all object modules to a single object module,
with consecutive addresses in each segment type



Linking Multiple Modules  (2)

ld



Background: How the Linker Works

1) Read all object modules (including library archive modules)

2) Merge the code, data, stack/heap segments of these
into a single code, data, stack/heap segment

3) Resolve global symbols  (e.g., global functions, variables): check 
for duplicate globals, undefined globals

4) Write the resulting object module, with a new relocation table

5) Mark the resulting file executable.



Static vs dynamic

● Static linking: All modules are linked into one big 
executable

● Dynamic linking: Some modules are kept separate, 
and linked together at load time

● Static loading: All modules of a program are 
loaded into main memory

● Dynamic loading: Modules are loaded into memory 
on demand as they are needed



Next time

● Lecture 3: Processes, Threads, File Systems (I)

● Reading:  Ch. 3.1-3.4, 4.1-4.3,4.5, 13.1 & 14.1-2
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