

TDDB68 Concurrent Programming and
Operating Systems

Lecture 2:
Introduction to C programming

Adrian Pop and Mikael Asplund

Thanks to Christoph Kessler for much of the material behind these slides.

Outline

● Intro and basic principles in C
● Data types and variable definition/declaration
● Structures and arrays
● Pointers
● Storage classes and memory allocation
● Debugging
● Briefly about linking and loading

A bit of history

1965-1970

Unix

● More straightforward than Multics

● Early 1970's

● Originally implemented in assembly

● Needed a programming language

C programming language

● Successor of B, variant of BCPL

● Book 1978 by Brian W. Kernighan and Dennis
M. Ritchie (”K&R-C”)

● 1989 ANSI standard

● Latest standard: C17

Basic principles

● Imperative

● Typed

● Medium abstraction level

● Structure
– Flexible
– Typically functionality-oriented

File relationships

glob.h

mymain.c def.cabc.c

stdio.h

preprocess #include
#include

abc.o mymain.o def.o

compile

mymain (executable)

link

libc.a

C run-time library is linked
with the user code

.o

.c

A first program

Compiling C Programs
● Example: GNU C Compiler: gcc (Open Source)
● One command calls preprocessor, compiler, assembler, linker
● Single module: Compile and link (build executable):

– gcc mymain.c executable: a.out
– gcc –o myprog mymain.c rename executable

● Multiple modules: Compile and link separately
– gcc –c –o mymain.o mymain.c compiler only
– gcc –c –o other.o other.c compiles other.c
– gcc other.o mymain.o call the linker, -> a.out

● make (e.g. GNU gmake)
– automates building process for several modules

● Check the man pages!

Data types in C
● Primitive types

– int, char, etc.

● Composite data types
– arrays
– structures - struct
– unions

● Programmer can define new type names with typedef

Primitive data types
● Integral types: char, short, int, long, enum

– can be signed or unsigned, e.g. unsigned int counter;
– sizes are implementation dependent (compiler/platform)
– use sizeof(datatype) operator to write portable code

● Floating point types: float, double, long double

● Pointers

Constants and Enumerations
● Constant variables:

const int red = 2;
const int blue = 4;
const int green = 5;
const int yellow = 6;

● Enumerations:
enum { red = 2, blue = 4, green, yellow } color;

color = green; // expanded by compiler to: color = 5;

● With the preprocessor:
– symbolic names, textually expanded before compilation

#define RED 2
...

● In C, constants are often capitalized: RED, BLUE, ...

 No ”=” or ”;”

Variable declaration/definition

/* Comment: declaration of

 globally visible functions

 and variables: */

extern int incr(int);

extern int initval;

#include ”glob.h”

// definition of var. initval:

int initval = 17;

// definition of func. incr:

int incr(int k)

{

 return k+1;

}

#include <stdio.h>

#include ”glob.h”

int counter; // locally def.

void main(void)

{

 counter = initval;

 printf(“new counter: %d”,
 incr(counter));

}

glob.h abc.c mymain.c

Note the difference:
Declarations announce
signatures (names+types).
Definitions declare (if
not already done) AND
allocate memory.
Header files should usually
never contain definitions!

More on composite data types

Structures - struct

● Unions implement variant records
– all attributes share the same storage

● Unions break type safety

● If handled with care, useful in low-level
programming

Unions

Arrays

int a[20];

int b[] = { 3, 6, 8, 4, 3 };

icplx c[4];

float matrix [3] [4];

Array declaration/definition

● Addressing: ty a[size];
Location of element a[i] starts at:
 (address of a) + i * elsize
where elsize is the element size in bytes - sizeof(ty)

● Uses:
a[3] = 1234567;
a[21] = 345; // ??, there is no array bound checking in
C
c[1].re = c[2].im;

● Arrays are just a different view of pointers

Array addressing and access

Pointer: type + address

The * symbol

● The * symbol has four separate uses:
– Used for declaration/definition of a pointer:

int *px;

int **py;

– Used to dereference a pointer (get the value the pointer is pointing to):
*px = 5;

int b = **py;

– Multiplication:
a = 3 * 4;
a *= 4;

– In comments:

/* this is a comment */

The & symbol

● The & symbol has three separate uses:
– Getting the address of a variable:

int *p = &a;

– Bitwise and:

unsigned int x = y & z;
y &= z;

– Logical and:

if (a && b) {
...

Pointer arithmetics

Pointer arithmetics
● Integral values can be added to / subtracted from pointers:

ty *q = p + 7;
// new value of q is (value of p) + 7 * sizeof(pointee-type of p: ty)

● Arrays are simply constant pointers to their first element:
– Notation b[3] is ”syntactic sugar” for *(b + 3)
– b[0] is the same as *b

● A pointer can be subtracted from another pointer:
– unsigned int offset = q – p;

3 6 8 4 3b:

Pointers and structs
● struct My_IComplex { int re; int im; } c, *p;

p = &c;
– p is a pointer to a struct

● p->re is shorthand for (*p).re
– Example: as p points to c, &(p->re) is the same as &(c.re)
– Example: elem->next = NULL;

c.re

c.im

0xafb024
0xafb024

c:p:

Why do we need pointers in C?
● Defining recursive data structures (lists, trees, ...)

● Argument passing to functions
– simulates reference parameters – missing in C (not C++)

● void foo (int *p) { *p = 17; } Call: foo (&i);

● Arrays are pointers
– Handle to access dynamically allocated arrays
– A 2D array is an array of pointers to arrays:

● int m[3][4]; // m[2] is a pointer to start of third row of m

● For representing strings – missing in C as basic data type
– char *s = ”hello”; // s points to char-array {’h’,’e’,’l’,’l’,’o’, 0 }

● For dirty hacks (low-level manipulation of data)

Pointer type casting

Pointer type casting
● Pointer types can be casted to other pointer types

– int i = 1147114711;
int *pi = &i;
printf (”%f\n”, * ((float *) pi)); // prints 894.325623

– All pointers have the same size (1 address word)
– But no conversion of the pointed data! (cf. unions)

● Compare this to: printf(”%f\n”, (float) i);

– A source of type unsafety,
but often needed in low-level programming

● Generic pointer type: void *
– Pointee type is undefined
– Always requires a pointer type cast before dereferencing

Pointers to functions (1)
● Function declaration

– int f(float);

● Function call: f(x)
– f is actually a (constant) pointer

to the first instruction of function f in program memory
– Call f(x) dereferences pointer f

● push argument x; save PC and other reg’s; PC := f;

● Function pointer variable
– int (*pf)(float); // pf is a pointer to a function

 // that takes a float and returns an int
– pf = f; // pf now contains start address of f
– pf(x); // or (*pf)(x) dereferencing (call): same effect as f(x)

Pointers to functions (2)
● Most frequent use: generic functions and callbacks

● Example: Ordinary sort routine
– void bubble_sort(int arr[], int asize)

{ int i, j;
 for (i=0; I < asize-1; i++)
 for (j=i+1; j < asize; j++)
 if (arr[i] > arr[j])
 ... // interchange arr[i] and arr[j]
}

– Need to rewrite this for sorting in a different order?
– Idea: Make bubble_sort generic in the compare function

Pointers to functions (3)
● Most frequent use: generic functions and callbacks

● Example: Generic sort routine
– void bubble_sort(int arr[], int asize, int (*cmp)(int,int))

{ int i, j;
 for (i=0; I < asize-1; i++)
 for (j=i+1; j < asize; j++)
 if (cmp (arr[i] , arr[j]))
 ... // interchange arr[i] and arr[j]
}

– int gt (int a, int b) { if (a > b) return 1; else return 0; }
– bubble_sort (somearray, 100, gt);

bubble_sort (otherarray, 200, lt);

Run-Time Memory Organization

Stack
• Automatic variables
• allocated on the run-time stack
at function call and removed on
return

• indexed by frame pointer (or
stack pointer)

(OS Kernel
 data and code)

Stack frame for
initial call to main

fp

sp
fp+4: some local var. of main

Memory space for
this user program Addr. 0:

NB: This is a simplification.

.data segment
● Global and static variables
● Indexed by absolute address

(or globals pointer)

_y: .double 9
_x: .space 4
...

_main:
... (code for main)
_foo:
... (code for foo)...

.text segment

• Compiled program code

• Copied in by loader
• branch target addresses:

by absolute address or PC-
relative

Stack limit

Heap limit Heap
• Dynamically allocated objects
• indexed via pointer variables

fp

fp+8: Space for local var. t
Stack frame for current
function foo called from main

sp

Storage classes in C
● Automatic variables

● Global variables

● Static variables

Automatic variables
● Local variables and formal parameters of a function
● Exist once per call
● Visible only within that function (and function call)
● Space allocated automatically on the function’s stack frame
● Live only as long as the function executes

int *foo (void) // function returning a pointer to an int.

{

 int t = 3; // local variable

 return &t; // ?? t is (sort of) deallocated on return from foo,

 // so its address should not make sense to the caller...

}

Global variables
● Actually a misnomer, should be called extern

storage class

● Declared and defined outside any function
extern int y; // y seen from all modules; only declaration

int y = 9; // only 1 definition of y for all modules seeing y

● Space allocated automatically when the
program is loaded

Static variables
● static int counter;

● Allocated once for this module (i.e., not on the
stack) even if declared within a function!

● Value will survive function return: next call
sees it

Dynamic memory

Dynamic allocation of memory in C
● malloc(N)

– allocates a block of N bytes on the heap
– and returns a generic (void *) pointer to it;
– this pointer can be type-casted to the expected pointer type
– Example: icplx *p = (icplx *) malloc (sizeof (icplx));

● free(p)
– deallocates the heap memory block pointed to by p

● Can be used e.g. for simulating dynamic arrays:
– Recall: arrays are pointers
– int *a = (int *) malloc (k * sizeof(int)); a[3] = 17;

● Type conversions and casting
● Bit-level operations
● Operator precedence order
● Variadic functions

(with a variable number of arguments, e.g. printf())
● C standard library
● C preprocessor macros
● I/O in C
● ...

C: There is much more to say...

Debugging

Linking and loading

File relationships

glob.h

mymain.c def.cabc.c

stdio.h

preprocess #include
#include

abc.o mymain.o def.o

compile

mymain (executable)

link

libc.a

C run-time library is linked
with the user code

.o

.c

Lifetime of a program

● Compiling: source code → object code

● Linking: object code module(s) → executable

● Loading: executable on disk → program in
main memory

How to relocate code?

Symbolic
addressing:

…

Definition of data X

…

If (X) goto P

…

P: …

Relative
addressing:

0: …

1: Space for data

2: …

3: If (*1) goto 5

4: …

5: …

Absolute addressing:

243: …

244: Space for data

245: …

246: If (*244) goto 248

247: …

248: …

Relocation table:
 - line 3, patch base+1
 - line 3, patch base+5

as loading

Linking Multiple Modules (1)

● Compiler (-c) created an (object) module file (.o, .bin)
– Binary format, e.g. COFF (UNIX), ELF (Linux)
– Non-executable (yet)
– Segments for code, global data, stack / heap space
– List of global symbols (e.g., functions, extern variables)
– Addresses in each segment start at 0
– Relocation table:

List of addresses/instructions that the linker must patch
when changing the start address of the module

● Static relocation (at compile/link time):
Merge all object modules to a single object module,
with consecutive addresses in each segment type

Linking Multiple Modules (2)

ld

Background: How the Linker Works

1) Read all object modules (including library archive modules)

2) Merge the code, data, stack/heap segments of these
into a single code, data, stack/heap segment

3) Resolve global symbols (e.g., global functions, variables): check
for duplicate globals, undefined globals

4) Write the resulting object module, with a new relocation table

5) Mark the resulting file executable.

Static vs dynamic

● Static linking: All modules are linked into one big
executable

● Dynamic linking: Some modules are kept separate,
and linked together at load time

● Static loading: All modules of a program are
loaded into main memory

● Dynamic loading: Modules are loaded into memory
on demand as they are needed

Next time

● Lecture 3: Processes, Threads, File Systems (I)

● Reading: Ch. 3.1-3.4, 4.1-4.3,4.5, 13.1 & 14.1-2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Common organization of a C program (2) Example
	Slide 9
	Compiling C Programs
	Data types in C
	Slide 12
	Constants and Enumerations
	Common organization of a C program (3) Example
	Slide 15
	Slide 16
	Composite data types (2): unions
	Slide 18
	Slide 19
	Composite data types (3): Arrays
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Pointer arithmetics
	Pointers and structs
	Why do we need pointers in C?
	Slide 28
	Pointer type casting
	Pointers to functions (1)
	Pointers to functions (2)
	Pointers to functions (3)
	Slide 33
	Storage classes in C (1)
	Slide 35
	Slide 36
	Storage classes in C (2)
	Slide 38
	Dynamic allocation of memory in C
	C: There is much more to say...
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	How to relocate code?
	Linking Multiple Modules (1)
	Linking Multiple Modules (2)
	Background: How the Linker Works
	Slide 49
	Sources of information

