
TDDB68
Lesson 3

Felipe Boeira

Contents
• Overview of lab 4

• Program arguments
• Overview of lab 5

• Wait System Call
• Termination of ill-behaving user processes
• Testing your implementation

• Overview of lab 6
• File system
• The readers-writers problem
• Additional system calls
• Testing your implementation

Lab 4: Command Line

• Handling program arguments
• Currently, Pintos does not support arguments to

programs
• Remember *esp = PHYSBASE - 12? We needed

- 12 (bytes) to compensate for the missing
arguments. Remove it and add proper support

• What is on the initial stack

Lab 4: Command Line

• To run a program with arguments in Pintos:

• Pintos (note the single quotes):  
pintos --qemu --run 'insult -s 17'

• System call:  
exec("insult -s 17");

Lab 4: Command Line
• Suppose we do this: insult -s 17

• The parameters of the main function of C programs are int argc
and char **argv. In this example:
• argc is 3
• argv[0] is "insult\0"
• argv[1] is "-s\0"
• argv[2] is "17\0"
• argv[argc] is NULL

• Note that the length of the array is actually 4, but the last element
is always NULL (required by the C standard)

Lab 4: Command Line
• Every time you do a function call, a stack frame is

created:

• The function main is never really called, but the
layout is the same

• The parameters and the return address of the stack
frame are pushed onto the stack by Pintos (your
code!)

Parameters
Return address
Local variables{Stack frame Growth

direction

Lab 4: Command Line
Address Name Data Type

0xbffffffd argv[2][...] "17\0" char[3]
0xbffffffa argv[1][...] "-s\0" char[3]
0xbffffff3 argv[0][...] "insult\0" char[7]

... word-align unused
0xbffffff0 word-align unused
0xbfffffec argv[3] NULL char *
0xbfffffe8 argv[2] 0xbffffffd char *
0xbfffffe4 argv[1] 0xbffffffa char *
0xbfffffe0 argv[0] 0xbffffff3 char *

...
0xbfffffc8 argv 0xbfffffe0 char **
0xbfffffc4 argc 3 int
0xbfffffc0 return address unused void (*) ()

Stack grows
towards 0

{
{

Th
e

str
ing

 is
 st

or
ed

 o
n

th
e

sta
ck

}

Adjust the stack  

pointer so it is  

divisible by 4

}

The function

 never returns

{
{

Pa
ra

m
et

er
s

Lo
ca

l v
ar

iab
les

Adding all of this to the stack is  
 what Lab 4 is about!

Lab 4: Command Line
• Step 1: Change *esp = PHYSBASE - 12; to *esp = PHYSBASE;

• Step 2: Put the words on the stack, word alignment, the argv
array, argc and the return address

• Hint: start_process calls load, which calls setup_stack.

• Hint: Take a look at setup_stack(void **esp). Note that the
argument is a pointer to the stack pointer! In other words, you
must dereference twice to write to the stack, and dereference
once to change the stack pointer itself!

• Hint: setup_stack is called by load, and after the call there is
debug code for printing the stack. To print the stack, uncomment  
/*#define STACK_DEBUG*/

Lab 4: Command Line
• Hint: You get a string, such as "insult -s 17\0", and you need to split it

up in smaller parts.  
Use (in lib/string.[c|h]):  
char * strtok_r(char *s, const char *delimiters, char **save_ptr)

• The following loop tokenises the string s = "insult -s 17\0".  
for (token = strtok_r (s, " ", &save_ptr); token != NULL; 
 token = strtok_r (NULL, " ", &save_ptr)) { ... } 
Every iteration you get the next word, i.e. "insult\0", "-s\0" and
"17\0". However, it does so destructively!

• This is what the memory looks after the loop: s = "insult\0-s\017\0"

• You need to save a pointer to every word

• Hint: Read Pintos documentation 3.5.1, it presents another stack print!

Previously… in TDDB68

pr
oc
es
s_
ex
ec
ut
e

th
re
ad
_c
re
at
e

st
ar
t_
pr
oc
es
s

lo
ad

Child

Parent

Wait fo
r th

e child 

 to sta
rt e

xecuting

(s
om
e
co
de
)

(t
he
 l
oa
de
d
pr
og
ra
m)

Wake up the parent 

and notify the parent  

whether it can start  

executing

Lab 5: Wait System Call
• int wait (pid_t pid)

• Scenarios:
• Parent calls wait before the child terminates
• Parent calls wait after the child terminates
• Parent terminates before the child without calling wait
• Parent terminates after the child without calling wait

• In each of these scenarios, your code must work and
shared resources must be released by whoever
terminates last

• Remember that a process can have several children!

Lab 5: Wait System Call
• The exit status is only available until the first wait call by the

parent. If the parent waits twice on the same child, then the
second wait returns -1

• Hint: Since the exit status has to be available even after the child
terminates, then the exit status can be stored in dynamically
allocated memory

• Hint: A common approach is to have a struct of data for every
parent-child pair. The struct contains, amongst other things, the
exit status

• As we noted earlier, this struct must be freed by whoever
terminates last, i.e. either the parent or the child

Lab 5: Wait System Call
• Scenario: parent waits for child to exit
• Important! Busy waiting is NOT allowed!

exec wait(Child)

exit(X)
Free the  

exit value!
Child

Parent
returns X

Waits

Lab 5: Wait System Call
• Scenario: child exits before the parent, and then

the parent calls wait

exec wait(Child) 
returns X

exit(X) Free the  
exit value!store X  

on the heap

Child

Parent

Lab 5: Wait System Call
• Scenario: parent never waits for the child and exits

before it

exec exit(Y)

exit(X)

Free the  
exit value!

Child

Parent

Lab 5: Wait System Call
• How to detect who is the last to exit?

• Hint: Keep a counter, together with the exit status, with the
initial value 2. When the parent and child exit, decrement it by
1. The value 0 represents that both the parent and the child has
exited, and whoever decrements it to 0 should free the memory

• Hint: Protect the counter with synchronisation! Pintos might
leak memory otherwise!

• struct parent_child {  
 int exit_status; 
 int alive_count; 
 /* ... whatever else you need ... */ 
};

Child Parent

pcs

Lab 5: Input Validation
• Argument paranoia: nothing the user processes does

should be able to crash Pintos
• For example: create((char*) 1, 1); is an invalid call

since address 1 is in kernel space. Furthermore, it is not
a string!

• Another example: read(STDIN_FILENO, 0xc0000000,
666); writes data to kernel space (will likely overwrite
something important)

• Hence, ALL pointers from the user processes to the
kernel must be checked! Including the stack pointer,
strings, and buffers

Lab 5: Input Validation
How to validate a pointer:

• A valid pointer from a user process is:
• below PHYS_SPACE in virtual memory (not kernel memory)
• associated with a page in the page table for the process (use
pagedir_get_page)

• If some pointer is not valid, then terminate the process! The exit status
is then -1

• If you were to dereference an invalid pointer that is below PHYS_SPACE,
then you get an error. It is possible to take care of the problem when
the error occurs, but it is more challenging (although, it is faster: read
the documentation if you want to attempt this)

• Hint: Read Pintos documentation 3.1.5

Lab 5: Input Validation
• Suppose a process calls create((char *) PHYS_BASE -
12345, 17);

• The function filesys_create does not check the string,
and the string is not NULL. The call will likely crash Pintos!

• Hint: You must check that the char * is a string by
iterating over every character of it, and check that the
pointer to it is a valid pointer

• Hint: In other words, for strings, you must check every
character until you find a '\0'. Remember to first check the
pointer, then read it! (You might get an error otherwise)

Lab 5: Input Validation
• Suppose a process calls write(1, malloc(1), 1000000);

Obviously, the arguments are invalid since the size of the buffer is
1, but the process claims it is much bigger!

• If we were to read from the buffer, then we would get an error. It is
not sufficient to only test the pointer, we must also check its size!

• Hint: We must check that every possible pointer to the buffer is
valid. In other words, we must test 10000000 pointers (at most, if
you want to optimise it then you can compute where the page
boundaries are, and check those)

• Hint: In contrast to strings, the size of the buffer is given and we
do NOT have to search for a '\0'

Lab 5: Input Validation
• The user process can modify its own stack pointer:  

asm volatile (”movl $0x0, %esp; int $0x30” :::);

• So you have to check the stack pointer if you want
to read what it points to. If you increment the stack
pointer, then you have to redo the check!

• In other words, you have to check the stack pointer
before reading the system call number, before
reading the first argument, and so on

Testing
• When you have finished, then you can test your

implementation with: make check
• The following tests are for Lab 1: halt, exit, create-

normal, create-empty, create-null, create-long, create-
exists, create-bound, open-normal, open-missing, open-
boundary, open-empty, open-twice, close-normal, close-
stdin, close-stdout, close-bad-fd, read-boundary, read-
zero, read-stdout, read-bad-fd, write-normal, write-
boundary, write-zero, write-stdin, write-bad-fd

• Most of the exec-* and wait-* tests (and Lab 1) should
pass when you have finished

• Hint: You can run a single test (from userprog/build) with: 
make tests/userprog/halt.result

Lab 6: Overview

• Synchronising the file system in Pintos

• The readers-writers problem

• Additional system calls (seek, tell, filesize, remove)

• Testing your implementation

Lab 6: File system
• devices/disk.[h|c] - Low-level operations on the drive  

(shared and already synchronised)
• filesys/free-map.[h|c] - Operations on the map of free disk sectors

(shared)
• filesys/inode.[h|c] - Operations on inodes, which represents an

individual file. When you write/read data to/from an inode then you
modify the actual physical file (shared)

• filesys/filesys.[h|c] - Operations on the file system, such as
create, open, close, remove, and so on (shared)

• filesys/directory.[h|c] - Operations on directories  
(partially shared)

• filesys/file.[h|c] - A file object that contains an inode and things
like a seek position. Every process has its own object (not shared)

Lab 6: File system

• Your assignment is to synchronise the files that
contains data which is shared between multiple
processes and are not already synchronised

• Use locks and semaphores!

Lab 6: Readers-writers
• It is easy to synchronise the file system by only using one lock

everywhere, but that leads to extremely poor performance
• We have these requirements:

• Several readers are able to read from the same file at the same time
• Only one writer is able to a specific file at the same time
• Several writers are able to write to different files at the same time
• When a process is reading from a file, then no process can write to

the file at the same time
• When a process is writing to a file, then no process can read from

the file at the same time
• Hint: There is at most 1 inode per physical file

Lab 6: Readers-writers

• The readers-writers problem is how to achieve the
aforementioned requirements. There are several
solutions with different properties

• Hint: Wikipedia has a few algorithms  
https://en.wikipedia.org/wiki/Readers–writers_problem

• Hint: The solution with readers-preference is easy
to implement, but might starve writers

Lab 6: System calls
• In addition to synchronising the file system, you also have to implement

these system calls:
• void seek (int fd, unsigned position):  

Sets the current seek position of the file
• unsigned tell (int fd):  

Gets the seek position of the file
• int filesize (int fd):  

Returns the file size of the file
• bool remove (const char *file_name): 

Removes the file. Hint: The removal of the file is delayed until it is not
opened by any process (make sure that this counter is synchronised)

• Hint: Use built-in functions
• Hint: Check for invalid arguments!

Lab 6: Hints
• Some questions that you should ask yourself: What can happen, in

the worst case, if two processes try to...
• Create and remove the same file at the same time?

• Create and remove the same directory at the same time?
• Open the same file at the same time?

• Open and close the same file at the same time?
• And so on!

• Many of these operations should, from each other perspective, be
“atomic"

• This is NOT a complete list!

Lab 6: Testing
• To test your implementation, we provide the following user programs:

• pfs.c

• pfs_reader.c

• pfs_writer.c

• The program pfs read and write to the same file concurrently:
• 2 writers that repeatedly fill the file with an arbitrary letter
• 3 readers that repeatedly read the file and checks that all the

letters are the same
• If the letters differ for the readers, then the test fails

• Run pfs many times and check the result each time! Inconsistencies
due to lack of synchronisation may not happen every time

Questions?

