
TDDB68
Lesson 2

Felipe Boeira

Contents
• Synchronisation

• Interrupts

• Scheduler

• Busy Waiting

• Lab 2

• Lab 3

Synchronisation
• Multiple processes running concurrently

• What is synchronisation and why is it needed?

• Consider the following, simple, expression: ++i

• The expression, when compiled, does about the following:

1. fetch i from memory and store it in a register;

2. increment the register by 1;

3. store the value in the register in memory;

4. if of interest, return the value in the register.

• Even an innocent looking line like ++i consists of several instructions!

Synchronisation
• What can happen if two processes, p1 and p2 executes ++i at the same time?

• Both processes execute the sequence instructions, but they might be
interleaved in any order. For example, the result of the following should be i=+2

1. Fetch i from memory to a register

2. --

3. Increment the register by 1

4. store the value in the register in
memory;

5. --

6. if of interest, return the value in the
register.

1. --

2. Fetch i from memory to a register

3. Increment the register by 1

4. --
5. store the value in the register in

memory;

6. if of interest, return the value in the
register.

• However, the result is i=+1

p1 p2

Synchronisation
Critical section

• A sequence of instructions, operating on shared resources,
that should be executed by a single process without
interference. Also known as mutual exclusion

• Concurrent accesses to shared resources can lead to
unexpected behaviours. In Lab 0, what could happen if two
processes called prepend to the same list, at the same time?

• Typical examples are data structures (e.g. lists), network
connections, static and global variables, hard drives, files,
and so on

Synchronisation

Some tools to solve the aforementioned problem are:

• Locks/Mutexes

• Semaphores

• Monitors (not needed in the labs)

• Conditions (not needed in the labs)

Synchronisation
Locks/Mutex (Mutual Exclusion)

• Two operations: acquire lock, and release lock

• The same process that acquires the lock must release it. For a mutex, another
process may release it

• Ensures that at most one process executes the code enclosed between acquire
and release lock

• In the previous example, p1 would have to finish executing ++i before p2 could
start

• Overzealous use of locks leads to poor utilisation of concurrency, i.e. try to not lock
more than necessary

• Acquiring and releasing locks are relatively expensive, but you do not have to think
about this during the labs

Synchronisation
Locks in Pintos:

• #include "threads/synch.h" // You need to include this

• struct lock l; // Defines and declares l as a lock

• lock_init(&l); // Initialises the lock l

• lock_acquire(&l); // Acquires the lock l

• lock_release(&l); // Releases the lock l

Synchronisation
Semaphores:

• A generalisation of locks

• Instead of lock_acquire and lock_release, we write sema_down and sema_up

• The process doing sema_down does not need to be the one doing sema_up

• You can set the number of processes that are allowed to execute the
critical section concurrently

• For locks, this number is set to 1. You can set it to 2 or more, or even 0.

• When the number is 0, then the process doing sema_down immediately
stops executing and waits for a sema_up (which another process can
do). If another process sema_up before the first sema_down, then the
process continues executing

Synchronisation
• Semaphores in Pintos:

• #include "threads/synch.h"

• struct semaphore s;

• sema_init(&s, X); // X is the initial value of how many
processes are allowed to execute the section
concurrently

• sema_down(&s);

• sema_up(&s);

Interrupts
• There are two types of interrupts in Pintos:

• Internal interrupts, which are caused by CPU
instructions such as system calls and invalid
memory accesses. The function intr_disable()
does not disable internal interrupts

• External interrupts, which are caused by hardware
devices such as the system timer, the keyboard,
disks, and so on. The function intr_disable()
postpones external interrupts

Scheduler
• The scheduler handles process scheduling. In short, it

is the schedulers job to decide when every process
gets to execute

• In operating systems, processes get preempted so that
another process can execute for a while

• When to preempt is based on timer interrupts, which
are external interrupts

• In Pintos, the scheduler preempts the running process
every 4th timer tick, and there are 100 ticks per second

Synchronisation Again
• The implementation of the synchronisation

primitives in Pintos is based on disabling interrupts

• When external interrupts are disabled, the
scheduler cannot preempt it and thus no other
process can execute the critical section
concurrently (Pintos do not support several cores
or CPUs)

• This is a very crude way of doing synchronisation,
but gets the job done in Pintos

Synchronisation Again
Beware of the following:

• Interrupts are NOT disabled until you release the lock (or
the semaphore), only during the function calls (i.e. acquire
and release). In other words, the critical section can still
get preempted

• You can NOT use locks in the interrupt handler, read the
Pintos documentation A.4.3 for more details on why

• Hint: You need to disable interrupts rather than using locks
when the interrupt handler can cause race conditions (but
use locks otherwise)

Busy Waiting
• Sometimes processes has wait for something, 

for example, to acquire a lock or  
semaphore, or simply wait  
a fixed number of ticks

• The assignment of Lab 2 is to  
improve the implementation of sleep

• The current implementation is this:

Ready

Blocked Running

Schedule
Yield

Sleep

Wake up

int64_t start = timer_ticks ();
while (timer_elapsed (start) < ticks) {
 thread_yield (); //Wasting CPU-cycles!
}

• The process goes from running to ready to running over an over:
there is little waiting going on

• This is unacceptable. Implement sleep in a much more efficient way!

Lab 2: Files and Functions

• devices/timer.[h|c]

• void timer_init()

• Remove busy-waiting from this function: 
void timer_sleep(int64_t ticks)

• int64_t timer_ticks()

• int64_t timer_elapsed(int64_t then)

Lab 2: Hints
• Semaphores do not suffer from busy waiting, it only checks

if there are any waiting processes when a sema_up occurs

• Recall that semaphores can be upped by anyone, and that
if you set the initial value to 0 then the calling process
stops executing immediately

• You need a list of sleeping processes, take a look at the list
implementation in Pintos

• If the list is sorted, then it is possible to very quickly check
if there are any processes that needs to be woken up

Lab 2: Testing
• Run the tests

• alarm-single
• alarm-multiple
• alarm-simultaneous
• alarm-zero
• alarm-negative

• make SIMULATOR=--qemu check

• An individual test is run by a command like this: 
pintos --qemu -- run alarm-simultaneous

• The tests will pass before you make any modifications because of the busy waiting
implementation! However, the implementation is very inefficient!

• Remove any printf, the checks compare the output with solution sheets/text files: if
there are any differences, then the check fails

Lab 3: Overview

• Execution of several user processes
• Exec: starts up a child process that executes the

given file
• Exit: terminates the process, frees allocated

resources and saves the exit status somewhere
• Alive counting to decide who should free

dynamically allocated memory

Lab 3: Exec
• pid_t exec (const char *cmd_line)

• The first word of the string cmd_line is a file name, the rest are the
arguments to the program. Spawn a new child process that loads the
file and executes it. If the child process could load and start executing
the file then return the process ID (PID) of the child, return -1 otherwise

• The current implementation of exec does not wait to see if the child
could load the file/program

• Make exec wait for the new process to finish loading before returning
the PID

• Hint: The “current” implementation is process_execute

• Hint: You can assume that TID and PID are the same thing in Pintos

• Hint: A process can have several children at the same time

Lab 3: Exec

pr
oc
es
s_
ex
ec
ut
e

th
re
ad
_c
re
at
e

st
ar
t_
pr
oc
es
s

lo
ad

Child

Parent

Wait fo
r th

e child 

 to sta
rt e

xecuting

(s
om
e
co
de
)

(t
he
 l
oa
de
d
pr
og
ra
m)

Wake up the parent 

and notify the parent  

whether it can start  

executing

Lab 3: Exec
• The following functions and lines of code are of interest.
• tid_t process_execute (const char *file_name)

• tid = thread_create (file_name, PRI_DEFAULT,
start_process, fn_copy); // Inside process_execute

• tid_t thread_create (const char *name, int
priority, thread_func *function,
void *aux)

• static void start_process (void *fname)
• start_process is the function that the new thread starts

executing, and aux is the argument to said function

Lab 3: Exec

• Hint: The only place where start_process is
"called" is in process_execute. Hence, you can
extend the parameter of start_process (fname) and
the argument to thread_create (fn_copy) to
whatever you want (e.g. a pointer to a struct)

• Hint: The initial thread “main” does not have any
parent, and is not created by thread_create, but it
is initialised by init_thread

Lab 3: Exec
• How to track parent-children and detect who is the last to exit?

• Hint: Keep a counter, together with the exit status, with the
initial value 2. When the parent and child exit, decrement it by
1. The value 0 represents that both the parent and the child has
exited, and whoever decrements it to 0 should free the memory

• Hint: Protect the counter with synchronisation! Pintos might
leak memory otherwise!

• struct parent_child {  
 int exit_status; 
 int alive_count; 
 /* ... whatever else you need ... */ 
};

Child Parent

pcs

Lab 3: Exit
• void exit (int status)

• The exit status has to be made available to its parent process. This
will be used in lab 5 when implementing wait().

• The process has to release all its allocated resources, such as free
dynamically allocated memory, close opened files, close network
connections, and so on. Release whatever resource you allocate in
your solution

• If the process crashes for any reason, then the exit status should be
-1. Furthermore, all of the allocated resources must be released

• Hint: Release resources in thread_exit() or process_exit()
• Hint: At exit, do: (make check will fail otherwise)  
printf("%s: exit(%d)\n", thread-name, thread-exit-value)

Questions?

