
Concurrent programming
and Operating Systems
Lesson 1

Dag Jönsson

1 Introduction
Administration
General Information
Pintos

2 Overview of the labs
3 Lab 0 in detail
4 Lab 1 in detail
5 FAQ
6 Debugging

TDDB68/TDDE47 Dag Jönsson 2023-01-19 2

Webreg

Deadline 2023-01-20

Use the Teams room if you haven’t found someone to
work with
Send me an email if you are unable to register!
dag.jonsson@liu.se

mailto:dag.jonsson@liu.se

TDDB68/TDDE47 Dag Jönsson 2023-01-19 3

Bonus

• If you have passed all labs by 2023-03-08 you get
3 bonus points on the exam

• Only available for students taking the course for
the first time

• Final hard deadline is 2023-03-28! Need to have
all pass in Webreg.

• Hand in through LiUs Gitlab

http://gitlab.liu.se

TDDB68/TDDE47 Dag Jönsson 2023-01-19 4

"Deadlines"

• Individual labs do not have deadlines
• "Soft deadlines", recommended pace

TDDB68/TDDE47 Dag Jönsson 2023-01-19 5

Hand in

After demonstration: make any corrections, commit,
branch, push, email

git checkout -b labX
git push --set-upstream origin labX
git checkout master # continue working on master

Note: origin might be something else for you, you can
just try a git push on the new branch to get some help

TDDB68/TDDE47 Dag Jönsson 2023-01-19 6

Pintos

• Labs are based on Pintos; an educational OS
developed at Standford University

• Written in C and is well documented
• Around 7 500 lines of code (LOC)
• The labs are about adding functionality to Pintos

TDDB68/TDDE47 Dag Jönsson 2023-01-19 7

Pintos

• Complication comes from reading and
understanding code

• Fairly small amount of actual code will be written
• Having a good understanding of C will save a lot of

time when debugging
• Need to work on the labs on non-scheduled time

as well
• There are preparatory questions in most labs, do

take the time to actually answer these

TDDB68/TDDE47 Dag Jönsson 2023-01-19 8

Pintos

• While working on the labs, prefer to use the Linux
machines on LiU

• There is a VM you can download and run if you
want to (user and password: pintos)

• You might be able to make it work on your own
machine if you use Linux, but this is not supported
by us

• Don’t use an IDE, use a simple editor of your
choice (emacs, vim, VS Code, etc)

TDDB68/TDDE47 Dag Jönsson 2023-01-19 9

Lab 0

• Getting to know C and pointers
• Linked lists, your own implementation and Pintos

implementation
• Setting up Pintos
• How to debug Pintos with GDB

TDDB68/TDDE47 Dag Jönsson 2023-01-19 10

Lab 1

• Single user process
• Adding first iteration of a system call handler
• 7 system calls to be implemented
• Afterwards, your OS should be able to:

• Read from and write to the console
• Create, read from, and write to files
• Exit a process and halt the machine

• Usually takes a bit of time since you need to
familiarize yourself with Pintos

• Solutions are usually around 160-200 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 11

Lab 2

• Multiple system threads
• One more system call: sleep
• sleep delays execution of the calling thread by

given number of milliseconds
• Synchronisation is now required
• This lab usually takes the least amount of time
• Solutions are usually around 40-60 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 12

Lab 3

• Multiple user processes
• Another system call to implement: exec
• exec allows a process start the execution of child

processes
• Create parent-child relationship
• Solutions are usually around 50-100 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 13

Lab 4

• Implement argument passing to programs
• Setup of the stack for a userspace program

according to the x86 convention
• Requires solid understanding of memory layout

and pointer arithmetic
• Solutions are usually around 40-50 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 14

Lab 5

• Multiple user processes
• Implement yet another system call: wait
• wait: Let a process wait for one of the children to

finish executing
• Use or extend the parent-child relationship your

created in lab 3.
• Validation of arguments given by the user
• Solutions are usually around 50-70 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 15

Lab 6

• Multiple processes/threads
• Synchronisation of the filesystem
• Make sure that no order of system calls, or internal

calls, leads to an invalid state (open, close, write,
read, and so on)

• 4 more syscalls; seek, tell, filesize, and remove
• Tends to take about as much time as lab 1
• Solutions are usually around 40-50 LOC

TDDB68/TDDE47 Dag Jönsson 2023-01-19 16

Lab 0 in detail

Linked list is a simple data structure to dynamically
store data

1 struct Node {
2 int data;
3 struct Node* next;
4 }

next next
NULL

TDDB68/TDDE47 Dag Jönsson 2023-01-19 17

Doubly linked lists are similar, but they also keep track
of the previous node
Pintos implements a generic doubly linked list

1 s t r u c t l i s t_e l em {
2 s t r u c t l i s t_e l em ∗ prev ;
3 s t r u c t l i s t_e l em ∗ next ;
4 } ;
5 s t r u c t l i s t {
6 s t r u c t l i s t_e l em head ;
7 s t r u c t l i s t_e l em t a i l ;
8 } ;
9 s t r u c t Node {

10 i n t data ;
11 s t r u c t l i s t_e l em elem ;
12 } ;

TDDB68/TDDE47 Dag Jönsson 2023-01-19 18

Lab 1 in detail

• There is only one user process at a time - no
concurrency.

• Suppose a user process want to open a file, then it:
Already implemented!

1. Calls the function int open(const char *file)
2. The function open puts the arguments on the

stack, together with the syscall number.
3. Produces an interrupt to switch from user mode to

kernel mode
4. The interrupt handler then looks at the interrupt

number, and delegates it to the appropriate
subhandler, in this case, the syscall handler

TDDB68/TDDE47 Dag Jönsson 2023-01-19 19

lib/user/syscall.[h|c] - The syscall wrapper
1
2 /∗ Invokes s y s c a l l NUMBER, p a s s i n g no
3 arguments , and r e t u r n s
4 the r e t u r n va l ue as an ` i n t ' . ∗/
5 #d e f i n e s y s c a l l 1 (NUMBER)
6 ({
7 i n t r e t v a l ;
8 asm v o l a t i l e (" pushl %[number] ;
9 i n t $0x30 ; addl $4 , %%esp "

10 : "=a " (r e t v a l)
11 : [number] " i " (NUMBER)
12 : " memory ") ;
13 r e t v a l ;
14 })
15
16 i n t open (c o n s t char ∗ f i l e) {
17 r e t u r n s y s c a l l 1 (SYS_OPEN, f i l e) ;
18 }

TDDB68/TDDE47 Dag Jönsson 2023-01-19 20

This is the assignment
• The syscall handler then (in kernel mode) does

1. Reads the syscall number to decide what syscall
was made (write, read, open, and so on)

2. Based on what syscall was made, the handler reads
the correct number of arguments from the stack,
and then performs the syscall

• The handler does not get the arguments for the
syscall directly, but it has to extract them from the
stack: f->esp

• Note that some arguments are just pointers,
strings for example are passed as pointers to the
first character of the string.

• If the syscall is expected to return some value, this
needs to be stored in the f->eax register.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 21

Files that should be studied:
• lib/user/syscall.[h|c] - The syscall wrapper
• threads/interrupt.[h|c] - Important structures
• lib/syscall-nr.h - Syscall numbers
• filesys/filesys.[h|c] - Pintos file system

Files that should be modified:
• userprog/syscall.[h|c] - Implement syscall handler

here
• threads/thread.[h|c] - Expand current structures if

needed

TDDB68/TDDE47 Dag Jönsson 2023-01-19 22

• Currently, the syscall handler kills every calling
process

• The handler must do the things that we discuess
earlier

• f->esp is the stack of the calling process
• The syscall number is at the top, after that are the

arguments, if any
• Every syscall has its own syscall number: use it to

decide the number of arguments

TDDB68/TDDE47 Dag Jönsson 2023-01-19 23

File descriptors (FD)

• A FD is a non-negative integer that represents
abstract input/output resources

• Input/output resources are, for example, files,
consoles, network sockets and so on

• The user processes only knows about FDs, and the
OS knows what concrete resoure it represents

• In Pintos, FD 0 and 1 are reserverd for stdin and
stdout

TDDB68/TDDE47 Dag Jönsson 2023-01-19 24

The syscalls

• halt - Shutdown the machine (halts the processor).
Hint: Use already implemented functions.

• exit - Exit the current process. Deallocate all of
the thread’s allocated resources (eg. files). This
will be revisted in later labs.
Hint: Free resources in thread_exit.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 25

• create - Create a file, return true if successful,
false otherwise.
Hint: Use already implemented functions

• open - Open a file. Returns the FD assigned to
the file. Every process have their own collection of
opened files.
Hint: Modify the thread struct to keep track of its
FDs.

• close - Close the file associated with the given FD.
Hint: Use already implemented functions.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 26

• read - Read from the file associated with the given
FD. The user process gives a buffer (piece of
memory) in which the read bytes should be written
to. Returns the number of bytes read.
Hint: Use already implemented functions. Use
input_getc to read from the console.

• write - Write to the file associated with the given
FD. The user process gives a buffer with the
content that should be written. Return the
number of written bytes.
Hint: Use already implemented functions. Use
putbuf to write to the console (study
lib/kernel/stdio.h and
lib/kernel/console.c).

TDDB68/TDDE47 Dag Jönsson 2023-01-19 27

Some things to keep in mind when working on the labs
• Every user process should be able to have at least

128 files open at the same time
• It’s dangerous to assume that the arguments are

valid! Example of things you need to handle:
• Given FD is not associated with any file
• Invalid buffer size
• Too many files opened

• You do not need to validate pointers yet! This will
be revisited in lab 5.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 28

FAQ

• Use thread_current() to get the thread struct for
the calling process.

• The functions filesys_open(char *) opens a file,
and the function file_close(file *) closes it

• The function init_thread(...) initialises every
thread, while the function thread_init(...)
initialises the thread module (once, when Pintos
starts up). If you need to do some initialisation for
every thread, modify the former function.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 29

• Run lab1test2 to test your solution. It will
• Create files
• Open files
• Read and write from the console
• Try to use bad FDs

• If you want to rerun the test, remove any files
created by the test first
pintos -- rm test0 rm test1 rm test2

• Passing lab1test2 does NOT mean that you have
finished the lab. You must ensure that there are no
special cases

• Your implementation will be tested more
thoroughly in lab 3

TDDB68/TDDE47 Dag Jönsson 2023-01-19 30

• In total, you will implement 14 system calls
• Linux has around 460 system calls, depending on

architecture
• Windows has more than 2000 system calls

TDDB68/TDDE47 Dag Jönsson 2023-01-19 31

Debugging

• Read Appendix E: Debugging tools in the Pintos
documentation

• If you get "Kernel Panic", then try the backtrace
tool

• free sets the bytes to 0xcc: If you see these
values, then something likely freed the memory

• Commit often! It’s fairly common to accidently
break Pintos in obscure ways, and often it’s easier
to just revert back to a working version and redo
the changes.

TDDB68/TDDE47 Dag Jönsson 2023-01-19 32

If you get something like this:
Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

Then type this (when standing in the build folder):
backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67
0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8}

You should get something like this:
0xc0106eff: debug_panic (lib/debug.c:86)
0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.S:38)

Dag Jönsson
dag.jonsson@liu.se

www.liu.se

mailto:dag.jonsson@liu.se
www.liu.se

	Introduction
	Administration
	General Information
	Pintos

	Overview of the labs
	Lab 0 in detail
	Lab 1 in detail
	FAQ
	Debugging

