TDDBG68/TDDEA47
Lab 2: Interrupts and threads

Felipe Boeira

January 2019

1 Goal

In this assignment you are supposed to get acquainted with some of the most
important mechanisms of operating systems such as timers, threads, interrupts,
and, last but not least, synchronization primitives. Proper functioning of any
concurrent operating system is simply impossible without them.

2 Overview

This assignment covers:

e Basic interrupt management.
e A first introduction to threads switching.

This lab intends to teach the basics of synchronization, starting from the
thread concurrency which is achieved via thread switching triggered by the timer
interrupt. Pintos uses three synchronization primitives: semaphores, locks and
conditions. All of them are already implemented. You should fully understand
how they work before you start using them.

3 Preparatory questions

Before you begin doing your lab assignment you have to answer on the following
set of questions to ensure that you are ready to continue.

e What is busy waiting? Why should the programmer avoid busy waiting
in a concurrent operating system?

e Explain difference between Yield and Sleep.

e What is the difference between locks and semaphores? (Hint: there are
two main differences). What is a deadlock?



Lab 2 TDDB68/TDDE47

4 Assignments in detail

Task Your task is to re-implement function timer_sleep () which is located in
devices/timer.c. The purpose of this function is to make a calling process
delay for a given time (sleep). The current implementation uses a busy-waiting
strategy: it is calling thread_yield () and checking the current time in a loop
until enough time has gone by. Obviously, this is not acceptable: processor time
is a very valuable resource and must not be wasted in busy waiting.

4.1 Implementation Suggestions

In this part of the lab, you need to re-implement timer_sleep (int64_t
ticks). If the thread calls timer_sleep () then its execution is suspended
for (at least) ticks ticks. In case there are no other running threads (that is,
if the system is idle), then the thread should be awaken after exactly ticks
ticks. You should not preempt other processes if there are any running after
the time has passed by, but rather put our process into the ready-to-run queue
and leave the decision when it should be executed to the scheduler.

Hint: Implement a queue for sleeping processes. You can use either original
list from Pintos distribution (1ib/kernel/list.[c|h]), or write your own
list implementation.

Note, that the argument to timer_sleep is provided in ticks, not in mil-
liseconds. The macro TIMER_FREQ defines how many ticks there are per second
(defined in devices/timer.h).

In your implementation you may modify other functions or add your own
code in timer.c and timer.h files. Note, that the functions similar to
timer_sleep():

e timer msleep ()
e timer_usleep ()
e timer nsleep()

rely on timer_sleep (), therefore there is no need to modify them. To test
your implementation you may run make SIMULATOR=--gemu check from
the threads/build directory. There are a number of tests:

e alarm-single

e alarm-multiple

e alarm-simultaneous
e alarm-zero

e alarm-negative

Page 2



Lab 2 TDDB68/TDDE47

which will test timer_sleep () function in different ways. You may run
(and debug if necessary) one test at a time, e.g.: pintos —-—-gemu —-- run
alarm-simultaneous Note, that these tests will also pass at the very be-
ginning because the current implementation of timer_sleep () is correct, al-
though it is using busy waiting.
Hint: If you added code inside ”threads” in lab 1, protect it with the following:

#ifdef USERPROG

3 #endif

5 Helpful Information

Code directories: 1inuxpintos/src/threads, linuxpintos/src/devices
Textbook chapters: Chapter 1.5.2: Timer
Chapter 3.2: Process Scheduling
Chapter 6.2: The Critical-Section Problem
Chapter 6.5: Semaphores
Chapter 6.6.1: The Bounded-Buffer Problem
Documentation:
Pintos documentation), and in particular:
Some parts of [Project 1/Synchronization
Interrupt Handling

Page 3


http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html
http://www.scs.stanford.edu/07au-cs140/pintos/pintos_2.html#SEC15
http://www.scs.stanford.edu/07au-cs140/pintos/pintos_6.html#SEC97
http://www.scs.stanford.edu/07au-cs140/pintos/pintos_6.html#SEC104

	Goal
	Overview
	Preparatory questions
	Assignments in detail
	Implementation Suggestions

	Helpful Information

