
TDDB68/TDDD47 - Lab 4

Felipe Boeira

February 2020

1 Goal

Now that you have implemented the exec() system call, new processes can
be spawned by user programs. One way to send instructions to programs is
through the usage of command line arguments, and this will be covered in this
assignment. The main goal is to understand how the arguments are organized
in the x86 architecture, and implement the parsing and layout of arguments
when spawning new processes.

2 Overview

This assignment covers:

• Understanding the memory layout of arguments in the x86 architecture

• Parse arguments received in a char array

• Pushing arguments to the stack according to the calling convention

3 Preparatory Questions

Take some time to go through these questions before running into the code:

• What are argc and argv that main in a C program takes as arguments?

• Where are they stored when the program begins executing?

4 Assignment in Detail

A user program may be called with arguments in the command line. Implement
arguments passing, so the arguments of a user program can be accessible within
it (details).

1

https://web.stanford.edu/class/cs140/projects/pintos/pintos_3.html##SEC44


Lab 4 TDDB68/TDDD47

At first, you should go into userprog/process.c, find the function setup stack()
and change back the following line:

esp = PHYS BASE - 12;
into
esp = PHYS BASE;

Now your program will always fail until you implement argument passing. Try
to run any user program.

Stop! Before continuing, think about why you have KERNEL
PANIC after you have removed ”-12”. What is wrong and why did
the program work before?

The user program with arguments should be called with apostrophes (’) from
the Pintos command line. Consider we have a program called ”binary”, then
we run pintos --qemu -- run ’binary -s 17’, where binary is called
with arguments -s and 17.

When the user program with arguments is called from exec(), you have to
call it as follows: exec("binary -s 17"). Figure 1 depicts an example of
stack layout when executing such command, your task is to build such layout
when spawning a new process according to char *cmd line.

Figure 1: Argument passing details

Although you can parse the string from the command line in the way you pre-
fer, we recommend you to have a look at the function strtok r(), prototyped

Page 2



Lab 4 TDDB68/TDDD47

in lib/string.h and implemented with thorough comments in lib/string.c.
You can find out more about it by looking at the man page (run man strtok r
at the prompt). We suggest that you limit the number of arguments to, for ex-
ample, 32, which will simplify your implementation because you can use a static
array of a fixed size to store the parsed arguments.

Necessary details about setting up the stack for this task you can find in
Program Startup Details section of the Pintos documentation.

5 Helpful Information

Code directory: src/userprog, src/threads, src/lib, src/lib/kernel
Textbook chapters: Chapter 2.3: System Calls
Chapter 2.4: Types of System Calls
Chapter 4.4: Threading Issues
Chapter 6.2: The Critical-Section Problem
Chapter 8.4: Paging
Documentation: Pintos documentation
(Always remember that the TDDB68 lab instructions always have
higher precedence)

6 Acknowledgement

This document is based on previous content from the course web pages.

Page 3

https://web.stanford.edu/class/cs140/projects/pintos/pintos_3.html##SEC51
https://web.stanford.edu/class/cs140/projects/pintos/pintos_3.html#SEC44

	Goal
	Overview
	Preparatory Questions
	Assignment in Detail
	Helpful Information
	Acknowledgement

