TDDB44 — Seminar 4
Exam Preparation

Adrian.Pop@liu.se

2023

LINKOPINGS UNMIVERSITET

mailto:Adrian.Pop@liu.se

Exam from 2022-08-25

Exercise 1

1. (3p) Compiler Structure and Generators

(a) (1p) What are the advantages and disadvantages of a multi-pass compiler (compared
to an one-pass compiler)?

(b) (2p) Describe briefly what phases are found in a compiler. What is their purpose,
how are they connected, what is their input and output?

1. (3p) Compiler Structure and Generators

(a) (1p) What are the advantages and disadvantages of a multi-pass compiler (compared
to an one-pass compiler)?

n
Exe rC I Se 1 (b} (2p) Describe briefly what phases are found in a compiler. What is their purpose,

how are they connected, what is their input and output?

Advantages

 wider scope, allows better optimization, better code generation

* |s needed for some type of languages (forward references)
* More modular design

Disadvantages
 Longer compile times and higher memory consumption

1. (3p) Compiler Structure and Generators

Sow ree o Lr:_, {a) (1p) What are the mldvnnF;lg::r; and disadvantages of a multi-pass compiler (compared
. to an one-pass compiler)?
Exe rC I Se I \L (b) (2p) Describe briefly what phases are found in a compiler. What is their purpose,
== e how are they connected, what is their input and output?
L exreagl C‘-Hd.iﬂ e
Cle ‘e~)

5 -:;"J_?_LL@'LC.& r:'){_- rr_C'.-|r¢.E 5

Sm Al g‘&;'j
(perser)

— .

r{?:‘ur“ﬁ e tre e, i L

P SEFH..:J.VLH'L CLFLEA
and (plesw. ce
__——M_:utur‘{,af-ﬂcfp{;_jfg ff.;-_;r‘,-.fvl{ .z::j-l t:j_f,ﬁ.:;u.i;s':
{ (,;_;h M z2ats

"J.':J.&"]

] ==
L

J Cople. Ir_ijt—'!b‘-@m_—-,,hmfr

& Lj'é-o‘ﬁf é‘.{f’-

E:f_jfn-'fl

]
ehe [0
i

Exercise 2

2. (5p) Top-Down Parsing

(a)

(4.5p) Given a grammar with nonterminals L, E, F and the following productions:
L::=Lal EF Bl FE 3
E::=E ~| o
F::= E ¢ ¢
where L is the start symbol, «, 3, v, , ¥ and w are terminals. (¢ is the empty
string!) What is/are the problem(s) with this grammar if it is to be used for writing a
recursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode/program

code without declarations is fine. Use the function scan() to read the next input
token, and the function error() to report errors if needed.)

(0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance,
in the LL-item pushdown automaton in the lecture on top-down parsing. But where
is the corresponding stack in a recursive descent parser?

(b) (0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance,
in the LL-item pushdown automaton in the lecture on top-down parsing. But where

Exe rCISe 2 is the corresponding stack in a recursive descent parser?

* In a recursive descent parser, the stack is the call stack (dynamic link).

L::=Lal EF | FEf8
E::=E ~| o

Exercise 2 Fiim E 0 e

What is/are the problems with the grammar if it is to be used for
writing a recursive descent parser with a single token lookahead?

e |s it left recursive? Why?

» Why left recursive grammars are problematic for recursive descent
parsers?

 What can we do?

L::=Lal EF | FEf8
E::=E ~| o

Exercise 2 Fiim E 0 e

What is/are the problems with the grammar if it is to be used for
writing a recursive descent parser with a single token lookahead?

o |s it left recursive? Why? — Starts with the same nonterminal on LHS.

» Why left recursive grammars are problematic for recursive descent
parsers? — It would generate infinite loops!

* What can we do? — Refactor the grammar.

Exercise 2

 Refactor the grammar, eliminate left recursion

e [mmediate left recursion

eE=Ec]d ‘
=>
E.=dFE
E'::=cE’| e

L::=Lal EF | FE | L:=La|EFDb|FED
E::=E ~v| ¢ E:=Ec]d
F::= E ¢ ¢ Fi=Eg]e
_:=La]|EFDb|FED o L ::=L11L2
=> L1::=EE”
L =La|lLl L
1= Jb FEb E”:=Fb | gED
EEB:TEE%bb Pb bEE L12::=al2]e
=> 7 R ’
EnzkbggEL}b E=dE
E”::=Fb|gEb//Fcanbee FE :=cE']e
=> e
[== L1112 FisEgle
L12::=al2]e

Exercise 2

Write a RDP parser for the modified grammar

Parse
gcanf};{ng); L20);
it (token = EOF) error;

L10O { EO: E"O }

E”ii (token == “g”) {
scan(); -9

E§)%token 1= “b?) error();
Felse d
i$)(token 1= “b*) error();
s
}
ng% Etoken == “a’) {

scan();

L2Q);
}
}

L::=L «al EF S| FE S
E::=E v 0
F::= E ¥ €

EQf{(token == “d’) {
=50
Y else’'{

error();

+
E,g% Etoken == “c’) {

BB
}

F(%féitgken:‘d’) {
i

(token = “g”) error();

L::=L1L2

L1::=EE”
E”::=Fb|gED
L12::=al2]e
E.=dFE’
E'::=cE’']e
Fi=Eg]e

Exercise 3

3. (3p) LR parsing

Use the SLR(1) tables below to show how the string o - 3 + a * [is parsed. You
should show, step by step, how stack, input data etc. are changed during the parsing.
Start state 1s 00, start symbol is S.

Tables:
Grammar: Action GOTO
State $ + - * e} 153 S A B C
l. 8 ::=A+ A 00 « x % % S09 S10 01 02 05 08
{ 01 A * * * * * x ok kX
2. A::=B-A 02 x S03 * * * * x k%
3 | B 03 * % % % S09 S10 ¥ 04 05 08
4 B =B % C 05 R3 R3 S06 S11 * * ko ok ko x
06 x % % % S09 S10 ¥ 07 05 08
5. | C 07 R2 R2 * * * * x ok x %
) 08 RS R5 R5 R5 * x k X
6. C ::=aqa 09 R6E R6 R6 R6 ok kX
' | 3 10 R7 R7 R7 R7 % ok ok
11 * % % % S09 S10 % k12
12 R4 R4 R4 R4 % * x k X

Exercise 3

Stack

0 ACTION[0, a]=59
0a9 ACTION[9, -] =R6
0C GOTO[0,C] =8
0C8 ACTION[8, -] =R5
0B GOTO[0, B] =5
OB5 ACTION][5, -] = S06
OB5-6 ACTION][6, b] = 510

OB5-6b10 ACTION[10, +] =R7
0OB5-6C8 GOTO[6, C] =8

a-b+a*b

Input

o+a*
o+a*
o+a*
Dt+a*
Dt+a*
o+a*

o+a*
+a*

Exercise 4

4. (3p) LR parser construction

Given the following grammar G for strings over the alphabet {a, 3,7,0} with nonterminals
A and B, where A is the start symbol:

A ::=aA | A | aBp
B ::= B | Ba | [fAa
[s the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR item sets.
If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph. the
ACTION table and the GOTO table.

If it is not: describe where/how the problem occurs.

|9

Exercise 4

state 3

A-=a. A
state 0 A-=a.Bb
start -=> _ A A== ah
A->. aA A= AD
A->.aBh
A-=.ADb A=

A->.aBb g
A-> B->.aB

-9 B-=_.Ba
B->.bAa

B-=.d

state 1

A-=A.b
start -=> A .

=

c:= B | Bae | BAa | O

aA | A | aBB | ~

A::=aA|Ab]aBb|g
B::=aB|Ba|bAa|d

!

Nice tool: https://smlweb.cpsc.ucalgary.ca/start.html

B->d.

state 5

A-=alh.
A-=A.Db

A-=q.
b

b
B
state 4 state 12
A->aB.h "TA-=aBb.
B->B.a
b
state 10 state 13
A'?ﬂB.b B-Ba.
BE-=aB.
B-B.a
state b state 9
state 7 b A-=Ab
A>3 A B->b.Aa state 11 | —
A->a.Bb A->.ah A->A.b | _a/[sate 14
B->a.B b A->.ADb B->bA.a
._,/"'A-:s.aE!h B->bAa.
A->.aA A-> g
A-= Ab ;
A->.aBb
A->.0 9
B-=.aB d
BE-=.Ba \
B-=.
>.bAa state 2
- state 8

nonterminal first set follow set
ba
ba

A ag
B abd

https://smlweb.cpsc.ucalgary.ca/start.html

Exercise 4

Nice tool:; https://smlweb.cpsc.ucalgary.ca/start.html

LR(0) Table - . SLR(1) Table .
s d a b " AlB] L8 d a b g|A||B
F 53 52 sl 1 _53 251
j acc acc lacc acc/s9 acc ; HEE || s9 |
2ka—g [ra—g [a—g (A — g) (A — g) 2|A>g) | MA—g) (A —g) L
3] 58 s7 s6 s2 s5 |[s4 3 s8|s7 56 S2sS ||s4
n s13 s12 E :813 s12 :
E HA—aA) [A—aA) [[A—aA) [r(A—aA)s9 A —aA) SIA—aA) | A—aA) MA—aA)s | |
3 $3 s2 sl 6 | |is3 5211
7] s8 s7 s6 s2 s5 [s10 E E s7 56 gsﬁ s10
Er[E—rd] (B — d)]r(B—rd] (B — d) (B — d) 8] | [fB —d) r(B — d) |
Er[h—rﬁb} A—Ab) |[(A—Ab) (A — Ab) (A — Ab) irm*hb] =r{A—>Ab) r(A— Ab) ||
Er(B—*aB} rIB—aB) | B—aB)/sl3|r(B— aB)s12|r(B— aB) 2 =T{B_*HBV313 r(B—raB}!':-;D:
11 s14 s9 11 | |[s14 s9 ||
Er[ﬂ—*aﬂh}r[A—vth}r[A—*th} fA—aBb) ([A—aBb) Er[h—raﬂb}zr{A—raBb] r(A—aBb) ;
Er(B—»Ba} (B—Ba) [(B—Ba) ((B—Ba) |[(B— Ba) 13 | fB—Ba) [rB—Ba) | |
Er[B—rhAa} nB—bAa) i B—=bAa) |[(B—bAa) [nB—bAa) 14 | fB—bAa) [(B—bAa) | |

The grammar is not SLR(1) because
§ shift/reduce conflict in state 5.
§ shift/reduce conflict in state 10.

The grammar is not LR(0) because
§8 shift/reduce conflict in state 1.
§8 shift/reduce conflict in state 5.
§ shift/reduce conflict in state 10.

https://smlweb.cpsc.ucalgary.ca/start.html

Exercise 5

5. (3p) Symbol Table Management

The C language allows static nesting of scopes for identifiers, determined by blocks en-
closed in braces. Given the following C program fragment (some statements are omitted):

int m;
int main(void) {
int 1i;

if (i==0) {
int j, m;
for (j=0; j<100; j++) {
int 1i; (a)
i =m *x 2;

(2p) For the program point containing the assignment i = m * 2, show how the
program variables are stored in the symbol table if the symbol table is to be realized
as a hash table with chaining and block scope control. Assume that your hash
function yields value 3 for i, value 1 for j and m, and value 4 for main.

(0.5p) Show and explain how the right entry of the symbol table will be accessed
when looking up identifier m in the assignment i = m * 2.

(0.5p) After code for a block is generated, one needs to get rid of the information for
all variables defined in the block. Given a hash table with chaining and block scope
control as above, show how to “forget” all variables defined in the current block,
without searching through the entire table.

Exercise 5

jshdable

‘jrm — int M
_ i iﬁ‘# PG (tzc'llé)
L
M g

\‘n’r L
ind 3

il

e
2
-

AN fat o
\/E[it L

Example:

if 1<10 then

.
.2

ExerCISe 6 elééif 1<20 then

.
LI |

6. (5p) Syntax-Directed Translation elseif 1<30 then
The Modelica programming language has an if statement defined according to the fol- n
lowing grammar ({ } is repetition and [| is optional content): else
: end if;
<if-statement> ’
if <expression> then { <statement> ; }
{ elseif <expression> then
{ <statement> ; }
} - - - - . -]
[else Write a syntax-directed translation scheme, with attributes and semantic rules, for trans-
{ <statement> ; } lating the if-statements to quadruples.
] : : :
end if The translation scheme should be used during bottom-up parsing. You are not allowed

to define and use symbolic labels. Using global variables (except quads and index to the
next quadruple) in the solution gives a deduction of (1p). You may need to rewrite the
crammar. Explain all the attributes, functions, and instructions that you introduce. State
all your assumptions. (Since it is a syntax-directed translation scheme, not an attribute
grammar, generation of a quadruple puts it in an array of quadruples and attribute values
are “small” values such as single quadruple addresses.)

Exercise 7

7. (3p) Error Handling
Explain, define, and give examples of using the following concepts regarding error han-
dling:
(a) (1p) Valid prefix property,
(b) (1p) Phrase level recovery,

(¢) (1p) Global correction.

7. (3p) Error Handling

}':T{|}|ni]l. 1|E*ﬁ1h*. zlllfl _u'i‘a'i* 1*7{.'1I]l|llt*:-' of I]hit]f_‘; I]ll* il:“n r‘l.\"II]_‘_‘; ! rilt'{-|3lﬁ 1‘1'.'_';'r1l't|'lll_‘_‘,

dling:

Exe rCise 7 (a) (Ip) Valid prefix property.

(b) (1p) Phrase level recovery.
(¢) (Ip) Global correction.

LL and LR parsers have the valid prefix property. They will report an
error as soon as the parser prefix is not a valid prefix.
Example: “a = b then” will report and error when parsing “then”

The parser may perform local corrections if an error is discovered

The parser finds the syntax tree of the correct string with a
minimum edit distance to the given erroneous string (will insert
missing “if” before the expression for: expression then .. else ..

error |].‘!t|-

Exercise 8

8. (3p) Memory management

(a) (1p) What does an activation record contain?

(b) (1p) What happens on the stack at function call and at function return?

(¢) (1p) What are static and dynamic links? How are they used?

8. (3p) Memory management

(a) (1p) What does an activation record contain?

Exe rCISe 8 (b) (1p) What happens on the stack at function call and at function return?

(c) (1p) What are static and dynamic links? How are they used?

a) AR - all data needed to call a function and execute it

b) An AR is created, arguments are passed, the function is called, on
return SP Is decreased, the previous AR Is active, the return result is
read

c) Static link point to AR of enclosing scope, dynamic link is the call
stack, points to the previous function on the stack (the caller)

Exercise 9

9. (3p) Intermediate Representation

Given the following code segment in a Pascal-like language:

if x=y
then x:=x-10
else while y>10 do
if y<x
then y:=y+1
else y:=func(x)

Translate the code segment into an abtract syntax tree, quadruples, and postfix code.

Exercise 10

10. (3p) Intermediate Code Generation

Divide the following code inte basic blocks, draw a control flow graph, and show as well
as motivate the existing loop(s):

L1: x:=x+1
L2: x:=x+1
L3: x:=x+1

if x=1 then goto L5
if x=2 then goto L1
if x=3 then goto L3
L4d: x:=x+1
L5: x:=x+1
if x=4 then goto L4

Exercise 10

] xi=x+1
|2 X:=x+1

© 0N gk owbdRE

|3 Xi=x+1
If x=1 then goto
If Xx=2 then goto
If x=3 then goto
L4: X:=x+1
L5: X:=x+1

|5
1

3

If x=4 then goto L4

BBlocks
1&2
3&4

S 0k wbd e
o

8&9

Loops?
1-6? SEP? SC?
7-9? SEP? SC?

Check also previous exams with solutions

e https://www.ida.liu.se/~TDDB44/exam/

https://www.ida.liu.se/%7ETDDB44/exam/index.en.shtml

End

e Questions?

	TDDB44 – Seminar 4�Exam Preparation
	Exam from 2022-08-25
	Exercise 1
	Exercise 1
	Exercise 1
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 3
	Exercise 3
	Exercise 4
	Exercise 4
	Exercise 4
	Exercise 5
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 7
	Exercise 8
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 10
	Check also previous exams with solutions
	End

