
TDDB44 – Seminar 4
Exam Preparation

Adrian.Pop@liu.se

2022-12-14

mailto:Adrian.Pop@liu.se

Exam from 2022-08-25

Exercise 1

Exercise 1

Advantages
• wider scope, allows better optimization, better code generation
• Is needed for some type of languages (forward references)
• More modular design
Disadvantages
• Longer compile times and higher memory consumption

Exercise 1

Exercise 2

Exercise 2

• In a recursive descent parser the stack is the call stack (dynamic link).

Exercise 2

What is/are the problems with the grammar if it is to be used for
writing a recursive descent parser with a single token lookahead?
• Is it left recursive? Why?
• Why left recursive grammars are problematic for recursive descent

parsers?
• What can we do?

Exercise 2

What is/are the problems with the grammar if it is to be used for
writing a recursive descent parser with a single token lookahead?
• Is it left recursive? Why? – Starts with the same nonterminal on LHS.
• Why left recursive grammars are problematic for recursive descent

parsers? – It would generate infinite loops!
• What can we do? – Refactor the grammar.

Exercise 2

• Refactor the grammar, eliminate left recursion
• Immediate left recursion
• E ::= E c | d

=>
E ::= d E’
E’ ::= c E’ | e

L ::= L a | E F b| F E b
E ::= E c | d
F ::= E g | e

• L ::= L a | E F b| F E b
=>
L ::= L a | L1
L1 ::= E F b | F E b
F E b => E g E b | e E b
E F b | E g E b | E b => E E”
E” ::= F b | g E b | b
E” ::= F b | g E b // F can be e
=>
L ::= L1 L2
L2 ::= a L2 | e

• L ::= L1 L2
L1 ::= E E”
E” ::= F b | g E b
L2 ::= a L2 | e
E ::= d E’
E’ ::= c E’ | e
F ::= E g | e

Exercise 2

• write a RDP parser for the modified grammar
Parse () { L(); }
L() { E(); E”() }
E” { if (scan() == “g”) { E(); if scan() != “b” error() }

else { F(); if scan() != “b” error() } }
L2() { scan() == a; L2() }

L ::= L1 L2
L1 ::= E E”
E” ::= F b | g E b
L2 ::= a L2 | e
E ::= d E’
E’ ::= c E’ | e
F ::= E g | e

Exercise 3

Exercise 3

Stack
0
0α9
0C
0C8
0B
0B5
0B5-6
0B5-6β10
0B5-6C8

Input
α−β + α ∗ β$

−β + α ∗ β$
−β + α ∗ β$
−β + α ∗ β$
−β + α ∗ β$
−β + α ∗ β$

β + α ∗ β$
+ α ∗ β$

α−β + α ∗ β

ACTION[0, α] = S9

ACTION[8, −] = R5

GOTO[0, C] = 8

ACTION[9, −] = R6

GOTO[0, B] = 5

ACTION[5, −] = S06

ACTION[6, β] = S10

ACTION[10, +] = R7

GOTO[6, C] = 8

Exercise 5

Exercise 5

Exercise 7

Exercise 7

a) LL and LR parsers have the valid prefix property. They will report an
error as soon as the parser prefix is not a valid prefix.
Example: “a = b then” will report and error when parsing “then”

b) The parser may perform local corrections if an error is discovered
c) The parser finds the syntax tree of the correct string with a

minimum edit distance to the given erroneous string

Exercise 8

a) AR – all data needed to call a function and execute it
b) An AR is created, arguments are passed, the function is called, on

return SP is decreased, the previous AR is active, the return result is
read

c) Static link point to AR of enclosing scope, dynamic link is the call
stack, points to the previous function on the stack (the caller)

Exercise 9

Exercise 10

Exercise 10
BBlocks
1. 1 & 2
2. 3
3. 4
4. 5
5. 6
6. 7
7. 8 & 9

Loops?
1-6? SEP? SC?
7-9? SEP? SC?

1

2

3

4

5

6

7

8

9

1. L1: x:=x+1
2. L2: x:=x+1
3. L3: x:=x+1
4. if x=1 then goto L5
5. if x=2 then goto L1
6. if x=3 then goto L3
7. L4: x:=x+1
8. L5: x:=x+1
9. if x=4 then goto L4

Exercise 4

	TDDB44 – Seminar 4�Exam Preparation
	Exam from 2022-08-25
	Exercise 1
	Exercise 1
	Exercise 1
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 3
	Exercise 3
	Exercise 5
	Exercise 5
	Exercise 7
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 10
	Exercise 4

