
COMPILER CONSTRUCTION
Seminar 01 – TDDB44 2022

Adrian Pop (adrian.pop@liu.se)

Martin Sjölund (martin.sjolund@liu.se)

Department of Computer and Information Science

Linköping University

mailto:adrian.pop@liu.se
mailto:martin.sjolund@liu.se

SEMINARS AND LABS

In the laboratory exercises, you shall complete a
compiler for DIESEL – a small Pascal like
language, giving you a practical experience of
compiler construction

There are 7 separate parts of the compiler to
complete in 11x2 laboratory hours and 4x2
seminar hours. You will also have to work during
non-scheduled time.

TDDB44 Compiler Construction - Tutorial 1

PURPOSE OF SEMINARS

The purpose of the seminars is to introduce you
to the lab

You need to read the introductions, the course
book and the lecture notes!

The lab instructions as well as a small collection
of exercises are available via the course
homepage.

TDDB44 Compiler Construction - Tutorial 1

SEMINARS

Seminar 1 (Today): Lab 1 & 2

Seminar 2: Lab 3 & 4

Seminar 3: Lab 5, 6 & 7

Seminar 4: Exam prep

TDDB44 Compiler Construction - Tutorial 1

RELATING LABS TO THE COURSE

• Building a complete compiler
– We use a a language that is small enough to be

manageable.

– Scanner, Parser, Semantic Elaboration, Code
Generation.

– Experience in compilation and software engineering.

TDDB44 Compiler Construction - Tutorial 1

LAB EXERCISES

This approach (building a whole compiler) has
several advantages and disadvantages:

Advantages
- Students gains deep knowledge

- Experience with complex code

- Provides a framework for the course

- Success instills confidence

Disadvantages
- High ratio of programming to thought

- Cumulative nature magnifies early
failures

- Many parts are simplified

TDDB44 Compiler Construction - Tutorial 1

LABS

Lab 0 Formal languages and grammars
Lab 1 Creating a scanner using ''flex''
Lab 2 Symbol tables
Lab 3 LR parsing and abstract syntax tree

 construction using ''bison''
Lab 4 Semantic analysis (type checking)
Lab 5 Optimization
Lab 6 Intermediary code generation (quads)
Lab 7 Code generation (assembler) and

 memory management

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

Lab 7 Codegen – expands
quadruples to assembler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

Let's consider this DIESEL program:

Declarations

Instructions block

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysis

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (SCANNER)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT
token pool _p val t ype

T_PROGRAM keyword
T_I DENT EXAMPLE i dent i f i er
T_SEMI COLON separator
T_CONST keyword
T_I DENT PI i dent i f i er
T_EQ operator
T_REALCONST constant
T_SEMI COLON separator
T_VAR keyword
T_I DENT A i dent i f i er
T_COLON separator
T_I DENT REAL i dent i f i er
T_SEMI COLON separator
T_I DENT B i dent i f i er
T_COLON separator
T_I DENT REAL i dent i f i er
T_SEMI COLON separator
T_BEGI N keyword
T_I DENT B i dent i f i er
T_ASSI GNMENT operator
T_I DENT A i dent i f i er
T_ADD operator
T_I DENT PI i dent i f i er
T_SEMI COLON separator
T_END keyword
T_DOT separator

3. 14159

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (SYMTAB)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

t oken pool _p val t ype
T_I DENT VOI D
T_I DENT I NTEGER
T_I DENT REAL
T_I DENT EXAMPLE
T_I DENT PI REAL
T_I DENT A REAL
T_I DENT B REAL

3. 14159

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (PARSER)
program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL

token pool _p val type
T_PROGRAM keyword
T_I DENT EXAMPLE i dent i f i er
T_SEMI COLON separator
T_CONST keyword
T_I DENT PI i dent i f i er
T_EQ operat or
T_REALCONST constant
T_SEMI COLON separator
T_VAR keyword
T_I DENT A i dent i f i er
T_COLON separator
T_I DENT REAL i dent i f i er
T_SEMI COLON separator
T_I DENT B i dent i f i er
T_COLON separator
T_I DENT REAL i dent i f i er
T_SEMI COLON separator
T_BEGI N keyword
T_I DENT B i dent i f i er
T_ASSI GNMENT operat or
T_I DENT A i dent i f i er
T_ADD operat or
T_I DENT PI i dent i f i er
T_SEMI COLON separator
T_END keyword
T_DOT separator

3. 14159

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (SEMANTICS)

INPUT OUTPUT

<instr_list>

:=

b

a

+

PI

NULL

type(a) == type(b) == type(PI) ?

YES

token pool _p val t ype
T_I DENT VOI D
T_I DENT I NTEGER
T_I DENT REAL
T_I DENT EXAMPLE
T_I DENT PI REAL
T_I DENT A REAL
T_I DENT B REAL

3. 14159

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

Lab 5 Optimizer – optimizes the
internal form

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (OPTIMIZER)

INPUT OUTPUT

:=

x

5

+

4

:=

x 9

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (QUADS)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

q_rplus A PI $1
q_rassign $1 - B
q_labl 4 - -

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (cont'd)

Lab 1 Scanner – manages lexical
analysisLab 2 Symtab –

administrates the
symbol table

Lab 3 Parser – manages syntactic
analysis, build internal form

Lab 4 Semantics – checks static
semantics

Lexical Analysis

Syntax Analyser

Semantic Analyzer

Intermediate
Code Generator

Code Optimizer

Code Generator

Source Program

Target Program

Symbol Table
Manager

Error
Handler

Lab 5 Optimizer – optimizes the
internal form

Lab 6 Quads – generates quadruples
from the internal form

Lab 7 Codegen – expands
quadruples to assembler

TDDB44 Compiler Construction - Tutorial 1

PHASES OF A COMPILER (CODEGEN)

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

INPUT OUTPUT

L3: # EXAMPLE
push rbp
mov rcx, rsp
push rcx
mov rbp, rcx
sub rsp, 24
mov rcx, [rbp-8]
fld qword ptr [rcx-16]
mov rcx, 4614256650576692846
sub rsp, 8
mov [rsp], rcx
fld qword ptr [rsp]
add rsp, 8
faddp
mov rcx, [rbp-8]
fstp qword ptr [rcx-32]
mov rcx, [rbp-8]
mov rax, [rcx-32]
mov rcx, [rbp-8]
mov [rcx-24], rax

L4:
leave
ret

TDDB44 Compiler Construction - Tutorial 1

LAB SKELETON

TDDB44.git

/code

 /scan

Contains all the necessary files to complete the first lab

 /symtab

Contains all the necessary files to complete the second
lab

 /remaining

Contains all the necessary files to complete the rest of the
labs

 /testpgm

Diesel programs for testing the implementation

TDDB44 Compiler Construction - Tutorial 1

INSTALLATION

• Take the following steps in order to install the lab
skeleton on your system:
– Fork the gitlab repository to a private repository on

gitlab.liu.se
– More information in the Lab Compendium

TDDB44 Compiler Construction - Tutorial 1

HOW TO COMPILE

• To compile:
– Execute make in the proper source directory

• To run:
– Call the diesel script with the proper flags
– The Lab Compendium specifies, for each lab, what test

programs to run, and what flags to use.

• To test:
– Execute for example make lab3 in the proper source

directory
– Running the test target checks that your output

matches that of the /trace subdirectory

TDDB44 Compiler Construction - Tutorial 1

HANDING IN LABS

• Demonstrate the working solutions to your lab
assistant during scheduled time. Then send a
link to your git branch containing your modified
files to the same assistant (put TDDB44 <Name
of the assignment> in the topic field). One e-
mail per group.

• You should get a webreg notification that the
source code was received, when it is approved,
and if the code needs to be revised

• You should get a webreg notification within 24
hours of an approved demonstration of the lab

TDDB44 Compiler Construction - Tutorial 1

DEADLINE

• Deadline for all the assignments is the end of
HT2 study period (you will get 3 extra points
on the final exam if you finish on time!)

• Note: Check with your lab assistant for
handing in solutions after the last scheduled
lab

TDDB44 Compiler Construction - Tutorial 1

DIESEL EXAMPLE

program circle;
const
 PI = 3.14159;
var
 o : real;
 r : real;
procedure init;
begin
 r := 17;
end;
function circumference(radius : real) : real;
 function diameter(radius : real) : real;
 begin

 return 2 * radius;
 end;
begin
 return diameter(radius) * PI;
end;
begin
 init();
 o := circumference(r);
end.

TDDB44 Compiler Construction - Tutorial 1

LAB 1
THE SCANNER

TDDB44 Compiler Construction - Tutorial 1

SCANNING

• Its input is text written in some language

• Its output is a sequence of tokens from that text. The
tokens are chosen according with the language

• Building a scanner manually is hard

• We know that the mapping from regular expressions to
FSM (Finite-State Machine) is straightforward, so why not
we automate the process?

• Then we just have to type in regular expressions and get
the code to implement a scanner back

Scanners are programs that recognize lexical
patterns in text

TDDB44 Compiler Construction - Tutorial 1

SCANNER GENERATORS

• Automate is exactly what flex does!

• flex is a fast lexical analyzer generator, a tool
for generating programs that perform pattern
matching on text

• flex is a free implementation (started 1987) of
the well-known lex program (~1977)

TDDB44 Compiler Construction - Tutorial 1

MORE ON LEX/BISON

If you’ll use flex/bison in the
future…

Lex & Yacc, 2nd ed
By, John R Levine, Tony Mason
& Doug Brown
O'Reilly & Associates
ISBN: 1565920007

TDDB44 Compiler Construction - Tutorial 1

MORE REFERENCES

For those who would like to
learn more about parsers by
using Java.

See also ANTLR:
https://www.antlr.org/

TDDB44 Compiler Construction - Tutorial 1

https://www.antlr.org/

HOW IT WORKS

flex generates at output a C source
file lex.yy.c which defines a routine
yylex()

Lex Compiler lex.yy.clex.l

 >> flex lex.l

TDDB44 Compiler Construction - Tutorial 1

 >> g++ lex.yy.c -lfl

HOW IT WORKS

lex.yy.c is compiled and linked with the -lfl
library to produce an executable, which is the
scanner

C Compiler a.outlex.yy.c

a.out sequence of tokensinput stream

 >> a.out < input.txt

TDDB44 Compiler Construction - Tutorial 1

FLEX SPECIFICATIONS

Lex programs are divided into three components

/* Definitions – name definitions
 * – variables defined
 * – include files specified
 * – etc
 */

%%

/* Translation rules – pattern actions {C/C++statements} */

%%

/* User code – supports routines for the above C/C++
 * statements
 */

TDDB44 Compiler Construction - Tutorial 1

NAME DEFINITIONS

• Name definition are intended to simplify the scanner
specification and have the form:

• Subsequently the definition can be referred to by {name},
witch then will expand to the definition.

• Example:

is identical/will be expanded to:

name definition

 DIGIT [0-9]
 {DIGIT}+”.”{DIGIT}*

 ([0-9])+”.”([0-9])*

TDDB44 Compiler Construction - Tutorial 1

PATTERN ACTIONS

pattern action

• The transformation rules section of the lex/flex
input, contains a series of rules of the form:

• Example:
[0-9]* { printf (“%s is a number”, yytext); }

TDDB44 Compiler Construction - Tutorial 1

Match only one specific character

x The character 'x'
. Any character except newline

SIMPLE PATTERNS

TDDB44 Compiler Construction - Tutorial 1

CHARACTER CLASS PATTERNS

Match any character within the class

[xyz] The pattern matches either 'x', 'y', or 'z'
[abj-o] This pattern spans over a range of

 characters and matches 'a', 'b', or
 any letter ranging from 'j' to 'o'

TDDB44 Compiler Construction - Tutorial 1

NEGATED PATTERNS

Match any character not in the class

[^z] This pattern matches any character
 EXCEPT 'z‘

[^A-Z] This pattern matches any character
 EXCEPT an uppercase letter

[^A-Z\n] This pattern matches any character
 EXCEPT an uppercase letter or a
 newline

TDDB44 Compiler Construction - Tutorial 1

SOME USEFUL PATTERNS

r* Zero or more 'r', 'r' is any regular expr.

\\0 NULL character (ASCII code 0)

\123 Character with octal value 123

\x2a Character with hexadecimal value 2a

p|s Either 'p' or 's'
p/s 'p' but only if it is followed by an 's', which
 is not part of the matched text

^p 'p' at the beginning of a line

p$ 'p' at the end of a line, equivalent to 'p/\n'

TDDB44 Compiler Construction - Tutorial 1

FLEX USER CODE

Finally, the user code section is simply copied to
lex.yy.c verbatim

It is used for companion routines which call, or
are called by the scanner

The presence of this user code is optional, if you
don’t have it there’s no need for the second %%

TDDB44 Compiler Construction - Tutorial 1

FLEX PROGRAM VARIABLES

yytext Whenever the scanner matches a token, the
 text of the token is stored in the null terminated
 string yytext

yyleng The length of the string yytext

yylex() The scanner created by the Lex has the entry
 point yylex(), which can be called to start or
 resume scanning. If lex action returns a value to a
 program, the next call to yylex() will continue
 from the point of that return

TDDB44 Compiler Construction - Tutorial 1

%{
/* includes and defines should be stated in this section */
%}

%%

[\t]+ /* ignore white space */

do|does|did|done|has { printf (”%s: is a verb\n”, yytext); }
[a-zA-Z]+ { printf (”%s: is not a verb\n”,yytext); }
.|\n { ECHO; /* normal default anyway */ }

%%

main() { yylex(); }

A SIMPLE FLEX PROGRAM

Recognition of verbs Mary has a
little lamb*.l

TDDB44 Compiler Construction - Tutorial 1

int num_lines = 0, num_chars = 0; /* Variables */

%%

\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; } /* Take care of everything else */

%%
main() { yylex();

 printf("lines: %d, chars: %d\n", num_lines, num_chars);
}

A SIMPLE FLEX PROGRAM

A scanner that counts the number of characters
and lines in its input

The output is the result

TDDB44 Compiler Construction - Tutorial 1

A PASCAL SCANNER

%{
 #include <math.h>
%}
DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ { printf("An integer: %s (%d)\n", yytext, atoi(yytext));
 }

{DIGIT}+"."{DIGIT}*
 { printf("A float: %s (%g)\n", yytext, atof(yytext)); }

if|then|begin|end|procedure|function
 { printf("A keyword: %s\n", yytext); }

{ID} { printf("An identifier: %s\n", yytext); }

TDDB44 Compiler Construction - Tutorial 1

A PASCAL SCANNER

"+"|"-"|"*"|"/" { printf("An operator: %s\n", yytext); }

"{" [^}\n]* "}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. { printf("Unknown character: %s\n", yytext);}

%%

main(argc, argv) {
 ++argv, --argc; /* skip over program name */
 if (argc > 0) yyin = fopen(argv[0], "r");
 else yyin = stdin;
 yylex();
}

TDDB44 Compiler Construction - Tutorial 1

FILES OF INTEREST

• Files you will need to modify:
– scanner.l : is the flex input file, which you’re going to

complete. This is the only file you will need to edit in this lab.

• Other files of interest
– scanner.hh : is a temporary include file used for scanner testing.
– scantest.cc : is an interactive test program for your scanner.
– symtab.hh : contains symbol table information, including string

pool methods.
– symbol.cc : contains symbol implementations (will be edited in

lab 2).
– symtab.cc : contains the symbol table implementation.
– error.hh and error.cc contain debug and error message

routines.

TDDB44 Compiler Construction - Tutorial 1

LAB2
THE SYMBOL TABLE

TDDB44 Compiler Construction - Tutorial 1

SYMBOL TABLES

A Symbol table contains all the information that
must be passed between different phases of a
compiler/interpreter

A symbol (or token) has at least the following
attributes:

• Symbol Name
• Symbol Type (int, real, char,)
• Symbol Class (static, automatic, cons...)

TDDB44 Compiler Construction - Tutorial 1

SYMBOL TABLES

In a compiler we also need:
• Address (where is the information stored?)
• Other information due to used data structures

Symbol tables are typically implemented using
hashing schemes because good efficiency for the
lookup is needed

TDDB44 Compiler Construction - Tutorial 1

SYMBOL TABLES

The symbol table primarily helps ...

… in checking the program's semantic correctness
(type checking, etc.)

… in generating code (keep track of memory
requirements for various variables, etc.)

TDDB44 Compiler Construction - Tutorial 1

SIMPLE SYMBOL TABLES

We classify symbol tables as:
• Simple
• Scoped

Simple symbol tables have…
… only one scope
... only “global” variables

Simple symbol tables may be found in BASIC
and FORTRAN compilers

TDDB44 Compiler Construction - Tutorial 1

SCOPED SYMBOL TABLES

Complication in simple tables involves
languages that permit multiple scopes

C permits at the simplest level two scopes:
global and local (it is also possible to have
nested scopes in C)

TDDB44 Compiler Construction - Tutorial 1

WHY SCOPES?

The importance of considering the scopes are
shown in these two C programs

int a=10; //global variable

main(){
 changeA();
 printf(”Value of a=%d\n,a);
}

void changeA(){
 int a; //local variable
 a=5;
}

int a=10; //global variable

main(){
 changeA();
 printf(”Value of a=%d\n,a);
}

void changeA(){
 a=5;
}

TDDB44 Compiler Construction - Tutorial 1

SCOPED SYMBOL TABLES

• Lookup in any scope – search the most
recently created scope first

• Enter a new symbol in the symbol table
• Modify information about a symbol in a

“visible” scope
• Create a new scope
• Delete the most recently scope

Operations that must be supported by the
symbol table in order to handle scoping:

TDDB44 Compiler Construction - Tutorial 1

HOW IT WORKS

I N T E G E R R E A L R E A D W R I T E

READ, REAL

A, WRITE

P1

INTEGER

Hash Table

Index to
string table

Other info. Hash Link
Block Table

pool_pos

sym_pos

TDDB44 Compiler Construction - Tutorial 1

A SMALL PROGRAM

 program prog;
 var
 a : integer;
 b : integer;
 c : integer;

 procedure p1;
 var
 a : integer;
 begin
 c := b + a;
 end;

 begin
 c := b + a;
 end.

TDDB44 Compiler Construction - Tutorial 1

YOUR TASK

• Implement the methods open_scope() and
close_scope(), called when entering and
leaving an environment.

• Implement the method lookup_symbol(), it
should search for a symbol in open
environments.

• Implement the method install_symbol(), it
should install a symbol in the symbol table.

• Implement the method enter_procedure().

TDDB44 Compiler Construction - Tutorial 1

FILES OF INTEREST

• Files you will need to modify
– symtab.cc : contains the symbol table implementation.
– scanner.l : minor changes.

• Other files of interest
(Other than the Makefile, use the same files you were given in the first lab.)

– symtab.hh : contains all definitions concerning symbols and the
symbol table.

– symbol.cc : contains the symbol class implementations.

– error.hh and error.cc : contain debug and error message routine

– symtabtest.cc : used for testing. Edit this file to simulate various
calls to the symbol table.

– Makefile : not the same as in the first lab!

TDDB44 Compiler Construction - Tutorial 1

DEBUGGING

• All symbols can be sent directly to cout. The
entire symbol table can be printed using the
print() method with various arguments.

TDDB44 Compiler Construction - Tutorial 1

	COMPILER CONSTRUCTION Seminar 01 – TDDB44
	SEMINARS AND LABS
	PURPOSE OF SEMINARS
	SEMINARS
	RELATING LABS TO THE COURSE
	LAB EXERCISES
	LABS
	PHASES OF A COMPILER
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (SCANNER)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (SYMTAB)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (PARSER)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (SEMANTICS)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (OPTIMIZER)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (QUADS)
	PHASES OF A COMPILER (cont'd)
	PHASES OF A COMPILER (CODEGEN)
	LAB SKELETON
	INSTALLATION
	HOW TO COMPILE
	HANDING IN LABS AND DEADLINE
	Slide 28
	DIESEL EXAMPLE
	LAB 1 THE SCANNER
	SCANNING
	SCANNER GENERATORS
	MORE ON LEX/BISON
	MORE REFERENCES
	HOW IT WORKS
	HOW IT WORKS
	FLEX SPECIFICATIONS
	NAME DEFINITIONS
	PATTERN ACTIONS
	SIMPLE PATTERNS
	CHARACTER CLASS PATTERNS
	NEGATED PATTERNS
	SOME USEFULL PATTERNS
	FLEX USER CODE
	FLEX PROGRAM VARIABLES
	A SIMPLE FLEX PROGRAM
	A SIMPLE FLEX PROGRAM
	A PASCAL SCANNER
	A PASCAL SCANNER
	FILES OF INTEREST
	Slide 51
	SYMBOL TABLES
	SYMBOL TABLES
	SYMBOL TABLES
	SIMPLE SYMBOL TABLES
	SCOPED SYMBOL TABLES
	WHY SCOPES?
	SCOPED SYMBOL TABLES
	Slide 59
	A SMALL PROGRAM
	YOUR TASK
	FILES OF INTEREST
	DEBUGGING

