
1 / 42

TDDB44/TDDD55 Lecture 10:
Code Optimization

Peter Fritzson and Christoph Kessler and Martin Sjölund

Department of Computer and Information Science
Linköping University

2020-11-30



2 / 42

Part I

Overview



3 / 42

Code Optimization – Overview

Goal Code that is faster and/or smaller and/or low energy

consumption

Source
code

Intermediate
program

representation
(IR)

Source-to-source
compiler/optimizer

Front
End

IR-level
optimizations

target-level
optimizations

Back-
End

Target-level
representation

Emit
asm
code

Mostly target machine 
independent, mostly
language independent

Target machine dependent,
language independent

Target machine
independent,
language dependent



4 / 42

Remarks

I Often multiple levels of IR:

I high-level IR (e.g. abstract syntax tree AST),
I medium-level IR (e.g. quadruples, basic block graph),
I low-level IR (e.g. directed acyclic graphs, DAGs)

→ do optimization at most appropriate level of abstraction

→ code generation is continuous lowering of the IR towards target

code

I “Postpass optimization”: done on binary code (after compilation

or without compilation)



5 / 42

Disadvantages of Compiler Optimizations

I Debugging made difficult

I Code moves around or disappears
I Important to be able to switch off optimization

Note: Some compilers have an optimization level -Og that avoids
optimizations that makes debugging hard

I Increases compilation time

I May even affect program semantics

I A = B*C - D + E→ A = B*C + E - D
may lead to overflow if B*C+E is too large a number



6 / 42

Optimization at Different Levels of Program Representation

Source-level optimization

I Made on the source program (text)

I Independent of target machine

Intermediate code optimization

I Made on the intermediate code (e.g. on AST

trees, quadruples)

I Mostly target machine independent

Target-level code optimization

I Made on the target machine code

I Target machine dependent



7 / 42

Source-level Optimization

At source code level, independent of target machine

I Replace a slow algorithm with a quicker one,

e.g. Bubble sort→ Quick sort

I Poor algorithms are the main source of inefficiency but difficult

to automatically optimize

I Needs pattern matching, e.g. Kessler 1996; Di Martino and

Kessler 2000



8 / 42

Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level

In most cases target machine independent

I Local optimizations within basic blocks (e.g. common

subexpression elimination)

I Loop optimizations (e.g. loop interchange to improve data

locality)

I Global optimization (e.g. code motion, within procedures)

I Interprocedural optimization (between procedures)



9 / 42

Target-level Code Optimization

At the target machine binary code level

Dependent on the target machine

I Instruction selection, register allocation, instruction scheduling,

branch prediction

I Peephole optimization



10 / 42

Basic Block

A basic block is a sequence of textually consecutive operations (e.g.

quadruples) that contains no branches (except perhaps its last

operation) and no branch targets (except perhaps its first operation).

I Always executed in same

order from entry to exit

I A.k.a. straight-line code

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4



11 / 42

Control Flow Graph

Nodes primitive operations

(e.g. quadruples), or

basic blocks

Edges control flow

transitions

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )



12 / 42

Basic Block Control Flow Graph

Nodes basic blocks

Edges control flow

transitions

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4



13 / 42

Part II

Local Optimization
(within single Basic Block)



14 / 42

Local Optimization

Within a single basic block (needs no information about other blocks)

Example: Constant folding (Constant propagation)

Computes constant expressions at compile time

const int NN = 4;
// ...
i = 2 + NN;
j = i * 5 + a;

→
const int NN = 4;
// ...
i = 6;
j = 30 + a;



15 / 42

Local Optimization (cont.)

Elimination of common subexpressions

Common subexpression elimination builds DAGs

(directed acyclic graphs) from expression trees and

forests.

A[i+1] = B[i+1] → tmp = i+1;
A[tmp] = B[tmp];

D = D + C * B;
A = D + C * B;

→ T = C * B;
D = D + T;
A = D + T;

Note: Redifinition of D = D+T is not a common subexpression (does

not refer to the same value).



16 / 42

Local Optimization (cont.)

Reduction in operator strength

Replace an expensive operation by a cheaper one (on

the given target machine)

x = y ^ 2.0; → x = y * y;

x = 2.0 * y; → x = y + y;

x = 8 * y; → x = y << 3;

(S1+S2).length() → S1.length() + S2.length()



17 / 42

Some Other Machine-Independent Optimizations

Array-references

I C = A[I,J] + A[I,J+1]
I Elements are beside each other in memory.

Ought to be “give me the next element”.

Inline expansion of code for small routines

x = sqr(y)→ x = y * y
Short-circuit evaluation of tests

(a > b) and (c-b < k) and /* ... */
If the first expression is false, the rest of the

expressions do not need to be evaluated if they do not

contain side-effects (or if the language stipulates that

the operator must perform short-circuit evaluation)



18 / 42

More examples of machine-independent optimization

See for example the OpenModelica Compiler (https:
//github.com/OpenModelica/OpenModelica/blob/master/
OMCompiler/Compiler/FrontEnd/ExpressionSimplify.mo)
optimizing abstract syntax trees:

// listAppend(e1,{}) => e1 is O(1) instead of O(len(e1))
case DAE.CALL(path=Absyn.IDENT("listAppend"),

expLst={e1,DAE.LIST(valList={})})
then e1;

// atan2(y,0) = sign(y)*pi/2
case (DAE.CALL(path=Absyn.IDENT("atan2"),expLst={e1,e2}))
guard Expression.isZero(e2)
algorithm
e := Expression.makePureBuiltinCall(

"sign", {e1}, DAE.T_REAL_DEFAULT);
then DAE.BINARY(
DAE.RCONST(1.570796326794896619231321691639751442),
DAE.MUL(DAE.T_REAL_DEFAULT),

e);

https://github.com/OpenModelica/OpenModelica/blob/master/OMCompiler/Compiler/FrontEnd/ExpressionSimplify.mo
https://github.com/OpenModelica/OpenModelica/blob/master/OMCompiler/Compiler/FrontEnd/ExpressionSimplify.mo
https://github.com/OpenModelica/OpenModelica/blob/master/OMCompiler/Compiler/FrontEnd/ExpressionSimplify.mo


19 / 42

Exercise 1:

Draw a basic block control flow graph (BB CFG)



20 / 42

Part III

Loop Optimization



21 / 42

Loop Optimization

Minimize time spent in a loop

I Time of loop body

I Data locality

I Loop control overhead

What is a loop?

I A strongly connected component (SCC)

in the control flow graph resp. basic

block graph

I SCC strongly connected, i.e., all nodes

can be reached from all others

I Has a unique entry point

Ex. { B2, B4 } is an SCC with 2 entry points

→ not a loop in the strict sense

(spaghetti code).

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4



22 / 42

Loop Example

I Removed the 2nd entry point

Ex. { B2, B4 } is an SCC with 1 entry point→
is a loop.

1: ( JEQZ, T1, 5, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( JUMP, 10, 0, 0 )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4



23 / 42

Loop Optimization Example: Loop-invariant code hoisting

Move loop-invariant code out of the loop

for (i=0; i<10; i++) {
a[i] = b[i] + c / d;

}

→
tmp = c / d;
for (i=0; i<10; i++) {
a[i] = b[i] + tmp;

}



24 / 42

Loop Optimization Example: Loop unrolling

I Reduces loop overhead (number of tests/branches) by

duplicating loop body. Faster code, but code size expands.

I In general case, e.g. when odd number loop limit – make it even

by handling 1st iteration in an if-statement before loop .

i = 1;
while (i <= 50) {
a[i] = b[i];
i = i + 1;

}

→

i = 1;
while (i <= 50) {
a[i] = b[i];
i = i + 1;
a[i] = b[i];
i = i + 1;

}



25 / 42

Loop Optimization Example: Loop interchange

To improve data locality, change order of inner/outer loop to make

data access sequential; this makes accesses within a cached block

(reduce cache misses / page faults).

for (i=0; i<N; i++)
for (j=0; j<M; j++)

a[ j ][ i ] = 0.0 ;

→
for (j=0; j<M; j++)

for (i=0; i<N; i++)
a[ j ][ i ] = 0.0 ;

Row-major order

a11 a12 a13

a
21

a
22

a
23

a
31

a
32

a
33

Column-major order
a

11
a

12
a

13

a
21

a
22

a
23

a
31

a
32

a
33

Figure: By Cmglee – Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=65107030

https://commons.wikimedia.org/w/index.php?curid=65107030


26 / 42

Loop Optimization Example: Loop fusion

I Merge loops with identical headers

I To improve data locality and reduce number of tests/branches

for (i=0; i<N; i++)
a[ i ] = /* ... */;

for (i=0; i<N; i++)
f(a[ i ]);

→
for (i=0; i<N; i++) {

a[ i ] = /* ... */;
f(a[ i ]);

}



27 / 42

Loop Optimization Example: Loop collapsing

I Flatten a multi-dimensional loop nest

I May simplify addressing (relies on consecutive array layout in

memory)

I Loss of structure

for (i=0; i<N; i++)
for (j=0; j<M; j++)
f( a[ i ][ j ] );

→ for ( ij=0; ij<M*N; ij++) {
f( a[ ij ] );

}



28 / 42

Exercise 2:

Draw CFG and find possible loops



29 / 42

Part IV

Global Optimization
(within a single procedure)



30 / 42

Global Optimization

I More optimization can be achieved if a whole procedure (=

global optimization) is analyzed

(Whole program analysis = interprocedural analysis)

I Global optimization is done within a single procedure
I Needs data flow analysis

I Example global optimizations:

I Remove variables which are never referenced.
I Avoid calculations whose results are not used.
I Remove code which is not called or reachable (i.e., dead code

elimination).
I Code motion
I Find uninitialized variables



31 / 42

Data Flow Analysis (1)

Definition A = 5 (A is defined)

Use D = A*C (A is used)

Data is flowing from definition to use

The flow analysis is performed in two phases, forwards and

backwards.

Forward analysis Finds Reaching

definitions. Which

definitions apply at a point

p in a flow graph?

A = 5; A = 7;

...
A = 3;

...

...
B = A;

...
=> B = 3

Point p



32 / 42

Data Flow Analysis (2), Forward – Available expressions
Used to eliminate common subexpressions over block boundaries.

...
A+C

...

...
A+C

...

...

...
...

...
A+C

...

Figure: An available expression A+C



33 / 42

Data Flow Analysis (3), Backward – Live variables

A variable v is live at point p if its value is used after p before any new

definition of v is made. For example if variable A is in a register and is

dead (not live, will not be referenced) the register can be released.

// ...
v = A;
// ...
c = v;
// ...

We know there is a

definition of v at the

highlighted line, but is

there another

definition of v before

it is used?

// ...
v = A;
x = 35;
c = v;
// ...

v is live at the

highlighted line since

there is no new

definition of v

in-between (and v is

used after this line).

// ...
v = A;
// ...
v = 999;
c = v;
// ...

The first v is not live at

the highlighted line,

since v was redefined

before the next use.



34 / 42

Data Flow Analysis (4), Backward – Very-Busy or

Anticipated expressions
An expression B+C is very-busy at point p if all paths leading from the

point p eventually compute the value of the expression B+C from the

values of B and C available at p.

...
D =B+C;

...

...
E=3+B+C;

...

...
B = 3;
C = 8;

...

...
F=B+C+D;

...

Point p



35 / 42

Remarks

I Need to analyze data dependencies to make sure that

transformations do not change the semantics of the code

I Global transformations need control and data flow analysis

(within a procedure – intraprocedural)

I Interprocedural analysis deals with the whole program

I Covered in more detail in courses

I (Discontinued) TDDC86 Compiler optimizations and code

generation
I (9 hp Ph.D. student level) DF00100 Advanced Compiler

Construction



36 / 42

Part V

Target Optimizations
on

Target Binary Code



37 / 42

Target-level Optimizations

Often included in main code generation step of back end:

I Register allocation

I Better register use→ less memory accesses, less energy

I Instruction selection

I Choice of more powerful instructions for same code→ faster +

shorter code, possibly using fewer registers too

I Instruction scheduling→ reorder instructions for faster code

I Branch prediction (e.g. guided by profiling data)

I Predication of conditionally executed code

→ See lecture on code generation for RISC and superscalar

processors (TDDB44)

→ (Much more in the discontinued course)



38 / 42

Postpass Optimizations (1)

“postpass” = done after target code generation

Peephole optimization

I Very simple and limited

I Cleanup after code generation or other

transformation

I Use a window of very few consecutive instructions

I Could be done in hardware by superscalar

processors

; ...
LD A, R0
ADD 1, R0
ST R0, A
LD A, R0
; ...

; ...
INC A, R0
; (removed)
; (removed)
LD A, R0
; ...

; ...
INC A, R0
; (removed)
; (removed)
LD A, R0
; ...

Could not remove LD instruction since the peephole context is too small (3

instructions). The INC instruction which also loaded A is not visible.



39 / 42

Postpass Optimizations (1)

“postpass” = done after target code generation

Peephole optimization

I Very simple and limited

I Cleanup after code generation or other

transformation

I Use a window of very few consecutive instructions

I Could be done in hardware by superscalar

processors

; ...
LD A, R0
ADD 1, R0
ST R0, A
LD A, R0
; ...

; ...
LD A, R0
ADD 1, R0
ST R0, A
; (load removed)
; ...

; ...
LD A, R0
ADD 1, R0
ST R0, A
; (load removed)
; ...

Greedy peephole optimization (as on previous slide) may miss a more

profitable alternative optimization (here, removal of a load instruction)



40 / 42

Postpass Optimizations (2) – Postpass instruction

(re)scheduling

I Reconstruct control flow, data dependences from binary code

I Reorder instructions to improve execution time

I Works even if no source code available

I Can be retargetable (parameterized in processor architecture

specification)

I E.g., aiPop™ tool by AbsInt GmbH, Saarbrücken



41 / 42

References

Beniamino Di Martino and Christoph Kessler. “Two

program comprehension tools for automatic

parallelization”. In: IEEE Concurrency 8.1 (2000), pp. 37–47.

DOI: 10.1109/4434.824311.

Christoph Kessler. “Pattern-Driven Automatic

Parallelization”. In: Sci. Program. 5.3 (Aug. 1996),

pp. 251–274. DOI: 10.1155/1996/406379.

https://doi.org/10.1109/4434.824311
https://doi.org/10.1155/1996/406379


42 / 42

www.liu.se


	Overview
	Local Optimization   (within single Basic Block)
	Loop Optimization
	Global Optimization   (within a single procedure)
	Target Optimizations   on   Target Binary Code
	References


