
1 / 34

TDDB44/TDDD55 Lecture 9:
Memory and Runtime

Peter Fritzson and Martin Sjölund

Department of Computer and Information Science
Linköping University

2020-11-26



2 / 34

Run-Time Systems Support Program Execution

I Memory management of a program during execution.

I This includes allocation and de-allocation of memory cells.

I Address calculation for variable references.

I For references to non-local data, finding the right object taking

scope into consideration.

I Recursion, which means that several instances of the same

procedure are active (activations of a procedure) at the same

time during execution.

I Dynamic language constructs, such as dynamic arrays, pointer

structures, etc.

I Different sorts of parameter transfer

Two different memory management strategies: static and dynamic

memory management, determined by the language to be executed.



3 / 34

Static Memory Management

I All data and its size must be known during

compilation, i.e. the memory space needed

during execution is known at compile-time.

I The underlying language has no recursion.

I Data is referenced to by absolute

addresses.

I Static memory management needs no

run-time support, because everything

about memory management can be

decided during compilation.

I An example of such a language is FORTRAN

77, whereas FORTRAN 90 has recursion.



4 / 34

Dynamic Memory Management

I Data size is not known at compile-time (e.g. dynamic arrays,

pointer structures).

I There is recursion.

I Examples of such languages are: Pascal, C, Algol, Java… Basically,

most of the general-purpose programming languages.



5 / 34

Dynamic Memory Management – Runtime Support

Run-time support is needed for languages with dynamic memory

management:

I The call chain must be stored somewhere and references to

non-local variables must be dealt with.

I Variables cannot be referenced by absolute addresses, but by

<blockno, offset>.
I All data belonging to a block (procedure) is gathered together in

an activation record (stack frame).

I At a procedure call memory is allocated on the stack and each

call involves constructing an activation record.



6 / 34

Dynamic Memory Management – Runtime Support



7 / 34

Some Concepts (Rep.)

Activation Each call (execution) of a procedure is known as an

activation of the procedure.

Life span of an activation of a procedure p lasts from the execution’s

first statement to the last statement in p’s procedure

body.

Recursive procedure If the procedure can be activated again during

the life span of the previous activation.

Activation tree Shows how procedures are activated and terminated

during an execution of a program.

Note: A program can have different activation trees in

different executions.

Call chain I All current activations (ordered by activation time)

I = a path in the activation tree

I = a sequence of procedure frames on the run-time

stack



8 / 34

Example of Activation Tree (Rep.)

program p;
procedure q;
(* ... *)
end (* q *);

procedure r;
(* ... *)
q;

end (* r *);

begin (* p *)
read(x);
if x = 0

then q;
else r;

end (* p *);

Two different activation trees for the

program:

Activation tree when x=0
p

read q

Activation tree when x≠0
p

read r

q



9 / 34

Formal and Actual Parameters (Rep.)

I Arguments declared in the head of a procedure declaration are

its formal parameters and arguments in the procedure call are

its actual parameters.

I In the example below:

i is a formal parameter

k is an actual parameter

procedure A(i: integer);
begin (* A *)
...
A(k);
...

end (* A *);



10 / 34

Activation Record

All information which is needed for an activation of a procedure is put in a

record which is called an activation record.

The activation record remains on the stack during the life span of the

procedure. An activation record contains:

I Local and temporary data

I Return address

I Parameters

I Pointers to previous activation records (dynamic link,

control link)

I Static link (access link) or display for finding the correct

references to non-local data (e.g. in enclosing scopes)

I Dynamically allocated data (dope vectors)

I Space for a return value (where needed)

I Space for saving the contents of registers

procedure p1
var A: (* ... *)
procedure p2
(* Reference to A *)

end (* p2 *)
end (* p1 *);



11 / 34

Typical Memory Organization (Pascal/Java-like language)

I Static data

I The memory requirement for data

objects must be known at compile

time and the address to these

objects is not changed during

execution, so the addresses can be

hard-coded in the object code.

I Stack

I Space for activation records is

allocated for each new activation

of procedures.

I Heap

I Allocation when necessary.

Object code

Static data

Stack

Free
Space

Heap

Stack grows
downwards

Heap grows
upwards

Global
data

Activation
records

Dynamic
data

Memory
fragmentation



12 / 34

How are non-local variables referenced?

I Static link (access link)

I Display

program prog; (* Block B0,predefined vars)
var a,b,c: integer; (* Block B1, Globals*)
procedure p1;

var b, c: real; (* Block B2 *)
procedure p2;

var c: real; (* Block B3 *)
begin
c := b+a; (* B3.c := B2.b + B1.a *)

end (* p2 *);
begin

p2;
end (* p1 *);

begin
p1;

end (* prog *).

In the procedures the variables are

referenced using <blockno, offset>:

B3.c := B2.b + B1.a

or by using relative blocknumber:

0.c := 1.b + 2.a

(0: current block, 1: nearest surrounding

block, etc.)



13 / 34

Non-local references through Static Link

I The static link is a pointer to the

most recent activation record for

the textually surrounding block

I Example. Use relative block number

for statement inside procedure p2:

0.c := 1.b + 2.a For variable a follow

the static link 2 steps.

I This method is practical and uses

little space. With deeply nested

procedures it will be slow.

p2

p1

main

Static Link



14 / 34

Non-local references through Display

I Display is a table with pointers

(addresses) to surrounding

procedures’ activation records.

I The display can be stored in the

activation records.

I Display is faster than static link for

deep nesting but requires more

space.

I Display can be slightly slower than

static link for very shallow nesting.

p2

p1

main

Display

Display



15 / 34

Dynamic Link, i.e., Control Link

I Dynamic link specifies the call chain

I Not the same as static link if there is a recursive call chain, e.g:

program foo;
procedure p1;

procedure p2
procedure p3;
begin (* p3*)

p1;
(* ... *)

end (* p3 *);
begin (* p2 *)

p3;
(* ... *)

end (* p2 *)
begin (* p1 *)

p2;
...;

end (* p1 *)
begin (* main *)

p1;
end (* main *)

The stack at 2nd call for p1 (on return from p1

we continue inside p3)

p1

p3

p2

p1

main

old fp

old fp

old fp

old fp

Dynamic link
- Call chain

Static link

Textual
environment



16 / 34

Heap Allocation (Rep.)

I In some languages data can dynamically be built during

execution and its size is not known (e.g. strings of variable

length, lists, tree structures, etc).

I Manual memory management

I De-allocation is not performed automatically as in stack

allocation. Hard work, can lead to bugs.

Pascal: new(p) (*allocation*) dispose(p) (*deallocation*)
C: p=malloc() /*allocation*/ free(p) /*deallocation*/

I Automatic memory management, with garbage collection (e.g.

Lisp, Java)

I De-allocation is automatic. Resource-consuming but avoids bugs.

released 
memory

memory
fragmentation

used

free

After memory compaction:

Free list



17 / 34

Data Storage and Referencing

I Where is data stored and how is it referenced?

I (Semi-static) Static data can be allocated directly (consecutive in

the activation record, data area).
I Data is referenced by <blockno, offset>.

blockno is specified as nesting depth.

I Simple variables (boolean, integer, real ...)

I These have a fixed size and are put directly into the activation

record, or in registers.

I Static arrays

I Fixed number of elements, i.e. size is known at compile time.

Example: A: array[1..100] of integer;
I Stored directly in the activation record.



18 / 34

Dynamically Allocated Arrays

I The size is unknown at compile time:

Example: B: array[1..max] of integer;
I max not known at compile-time.

I Dope vector (data descriptor) is used for dynamically allocated

arrays. Dope vectors are stored in the activation record.

Dope vector:

Either above
the stack + offset
or in the heap

Upper limitLower limit

Start address



19 / 34

Dynamic Arrays and Block Structures in ALGOL (1)

parameters
A STACKTOP
DISPLAY

before L1

Z,B dope v.
b1 STACKTOP
parameters
A STACKTOP
DISPLAY

before L2

PROCEDURE A(X,Y); INTEGER X, Y;
L1: BEGIN REAL Z; 

ARRAY B[X:Y];
L2: BEGIN REAL D,E;
L3: •••

END;

L4: BEGIN ARRAY A[1:X];
L5: BEGIN REAL E;
L6: •••

END;
L7: END;

L8: END;








(block B1:)



20 / 34

Dynamic Arrays and Block Structures in ALGOL (2)

PROCEDURE A(X,Y); INTEGER X, Y;
L1: BEGIN REAL Z; 

ARRAY B[X:Y];
L2:BEGIN REAL D,E;
L3: •••

END;

L4:BEGIN ARRAY A[1:X];
L5:BEGIN REAL E;
L6: •••

END;
L7: END;

L8: END;








(block B1:)
array B

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L2,L4,L8

array B

D, E

b2 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L3



21 / 34

Dynamic Arrays and Block Structures in ALGOL (3)

PROCEDURE A(X,Y); INTEGER X, Y;
L1: BEGIN REAL Z; 

ARRAY B[X:Y];
L2:BEGIN REAL D,E;
L3: •••

END;

L4:BEGIN ARRAY A[1:X];
L5:BEGIN REAL E;
L6: •••

END;
L7: END;

L8: END;








(block B1:)
array A

array B

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L5, L7

array A

array B

E

b4 STACKTOP

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L6



22 / 34

Parameter Passing (1) (Rep.) – Call by Reference

I There are different ways of passing parameters in different

programming languages. Here are four of the most common

methods:

I 1. Call by reference (Call by location)

I The address to the actual parameter, l-value, is passed to the

called routine’s AR
I The actual parameter’s value can be changed.
I Causes aliasing.
I The actual parameter must have an l-value.

I Example: Pascal’s VAR parameters, reference parameters in C++.

In Fortran, this is the only kind of parameter.



23 / 34

Parameter Passing (2) (Rep.) – Call by Value

I 2. Call by value

I The value of the actual parameter is passed
I The actual parameter cannot change value

I Example: Pascal’s non-VAR parameters, found in most languages

(e.g. C, C++, Java)



24 / 34

Parameter Passing (3) (Rep.) – Call by value-result (hybrid)

I 3. Call by value-result (hybrid)

I The value of the actual parameter is calculated by the calling

procedure and is copied to AR for the called procedure.
I The actual parameter’s value is not affected during execution of

the called procedure.
I At return the value of the formal parameter is copied to the

actual parameter, if the actual parameter has an l-value (e.g. is a

variable).

I Found in Ada.



25 / 34

Parameter Passing (4) (Rep.) – Call by Name

I 4. Call by name

I Similar to macro definitions
I No values calculated or passed
I The whole expression of the parameter is passed as a procedure

without parameters, a thunk.
I Calculating the expression is performed by evaluating the thunk

each time there is a reference to the parameter.
I Some unpleasant effects, but also general/powerful.

I Found in Algol, Mathematica, Lazy functional languages



26 / 34

Example of the Four Parameter Passing Methods (Rep.)

procedure swap(x, y : integer);
var temp : integer;
begin
temp := x;
x := y;
y := temp;

end (*swap*);

(* ... *)
i := 1;
a[i]:=10; (* a: array[1..5]

of integer *)↪→

print(i,a[i]);
swap(i,a[i]);
print(i,a[1]);

Results from the 4 parameter passing methods. The first print

statement always prints:

1 10
Printouts from the second print statement in the above example

Call by reference 10 1
Call by value 1 10
Call by value-result 10 1
Call by name Error!



27 / 34

Reason for the Error in the Call-by-name Example

The following happens:

(* ... *)
x = text('i');
y = text('a[i]');
temp := i; (* => temp:=1 *)
i := a[i]; (* => i:=10 since a[i]=10 *)
a[i] := temp; (* => a[10]:=1 => index out of bounds *)

Note: This error does not occur in lazy functional languages using

call-by-name since side-effects are not allowed.



28 / 34

Static Memory Management E.g. Fortran77 and (partly)

CUDA/C on NVIDIA

I No procedure nesting, i.e., no block structure.

I References to variables locally or globally.
I No displays or static links needed.

I No recursion (stack not needed).

I All data are static (heap not needed).

I All memory is allocated statically

I Variables are referenced by absolute address.
I The data area (i.e. the activation record) is often placed with the

code.
I Inefficient for allocating space for objects which are perhaps

used only a short time during execution.
I Execution is efficient in that all addresses are placed and ready in

the object code.
I Problematic for parallel code.



29 / 34

Static Memory Allocation and Call/Return in Fortran77

SUBROUTINE SUB(J)
I = 1
J = I+3*J
END

Return address

I

J

Temp

...

Code for SUB

...

I At procedure call

1. Put the addresses (or values) of

the actual parameters in the data

area.

2. Save register contents.

3. Put return address in the data

area.

4. Execute the routine.

5. References to variables locally or

globally.

6. No displays or static links needed.

I On return

1. Reset the registers.

2. Jump back.



30 / 34

Memory management in Algol, Pascal, C, C++, Java

I Language Properties:

I Nested procedures/blocks (PASCAL, ALGOL)
I Dynamically allocated arrays (ALGOL, C99, C++, ...)
I Recursion
I Heap allocation (PASCAL, C, C++, Java, ...)

I Problems:

I References to non-local variables (solved by display or static link)
I Call-by-name (ALGOL, Lazy Functional Languages)
I Dynamic arrays (dope vector)
I Procedures as parameters



31 / 34

Events when Procedure P Calls Q

At call:

I P already has an AR (activation

record) on the stack

I P’s responsibility:

I Allocate space for Q’s AR.
I Evaluate actual parameters

and put them in Q’s AR.
I Save return address and

dynamic links (i.e. top_sp) in

new (Q’s) AR.
I Update (increment) top_sp.

I Q’s responsibility:

I Save register contents and

other status info.
I Initialize own local data and

start to execute.

At return:

I Q’s responsibility

I Save return value in

own AR (NBP can

access the return value

after the jump).
I Reset the dynamic link

and register contents,

...
I Q finishes with return

to P’s code.

I P’s Responsibility

I P collects the return

value from Q, despite

update of top_sp.



32 / 34

At Calls – Stack and Heap

return value

actual parameters

dynamic link (old fp)

return address

static link

saved regs (if necessary)

local variables

temporary variables

dynamic objects/arrays (if nec)

Stack

Heap

grows
downwards

grows
upwards stack grows

downwards

AR for caller

AR for callee, 
i.e. called proc

return value

actual parameters

dynamic link (old fp)

return address

static link

saved regs (if necessary)

local variables

temporary variables

dynamic objects/arrays (if nec)

callers
responsibility

callee's
responsibility

old fp

new fp =
old top_sp

old top_sp

new top_sp



33 / 34

Procedure Call/Return in Algol, Pascal, C, ...

At call:

1. Space for activation record is

allocated on the stack.

2. Display / static link is set.

3. Move the actual parameters.

4. Save implicit parameters (e.g.

registers).

5. Save return address.

6. Set dynamic link.

7. Execute the routine.

At return:

1. Reset dynamic link.

2. Reset the registers

3. Reset display / static link

4. Jump back.



34 / 34

www.liu.se


