
TDDB44/TDDD55 Lecture 1:
Compiler Construction Introduction

Martin Sjölund

Department of Computer and Information Science
Linköping University

2018-11-05

Introduction, Translators
I Compiler

Program in a
representation language

Translator
Program in another

representation language

Error messages

I High-level language → machine language or assembly language (Pascal, Ada,
Fortran, Java, …)

I Three phases of execution:

”Compile-time”
1. Source program → object program (compiling)
2. Linking, loading → absolute program

”Run-time”
3. Input → output

Interpreters

High-level language → intermediate code – which is interpreted directly, not
translated, such as:

I BASIC, LISP, APL
I command languages such as

UNIX-shell
I query languages for databases
I Early versions of JavaScript

interpreters

Source
program

Interpreter
Error

messages

Input

Result

Assembler

Symbolic machine code → machine code, for example:

MOVE R1,SUM → 01..101

Simulator, Emulator

Machine code is interpreted → machine code
Examples:
I Simulate a processor on an existing processor
I Running qemu on an amd64 laptop to run ARM Linux to test things
I Running old games on modern hardware

Generally, an emulator will try to mimic the behaviour of the foreign architecture as
best it can. A simulator will try to model the entire state of the foreign processor.

Preprocessor/Macro
Extended (“sugared”) high-level language → high-level language

Listing 1: ”IF-THEN-ELSE in FORTRAN”
IF A < B THEN

Z=A
ELSE

Z=B

Listing 2: ”FORTRAN after preprocessing”
IF (A.LT.B) THEN GOTO 99
Z=B
GOTO 100

99 Z=A
100 CONTINUE

Listing 3: ”File inclusion in C”
#include <unistd.h>

Natural Language – Translators

For example Chinese → English
Very difficult problem, especially to include context:
I Example 1: Visiting relatives can be hard work

I To go and visit relatives …
I Relatives who are visiting …

I Example 2: I saw a man with a telescope

Why High-Level Languages?

I Understandability (readability)
I Naturalness (languages for different applications)
I Portability (machine-independent)
I Efficient to use (development time) due to

I separation of data and instructions
I typing
I data structures
I blocks
I program-flow primitives
I subroutines

The Structure of the Compiler

Source
program

Analysis
Intermediate
program

Synthesis
Object
program

Logical organization
I Anaylysis (“front-end”):

Pull apart the text string (the program) to internal structures, reveal the structure
and meaning of the source program.

I Synthesis (“back-end”):
Construct an object program using information from the analysis.

The Phases of the Compiler
Source program

Lexical
analysis

 Sequence of chars:
 'IF sum=5 THEN...'

Syntactic
analysis

 Sequence of tokens:
 'IF' 'sum' '=' '5'

Error management

Semantic
analysis and
intermediate

code generation

 Parse tree, derivation tree

Code
optimization

 Internal form, intermediate code

Code
generation

 Internal form, intermediate code

Object program

Table management

Compiler Passes and Phases

I Pass:
I Physical organisation (phase to phase) dependent on language and compromises.
I Available memory space, efficiency (time taken), forward references, portability- and

modularity- requirements determine the number of passes.
I The number of passes: (one-pass, multi-pass)

I The number of times the program is written into a file (or is read from a file).
I Several phases can be gathered together in one pass.

Lexical Analysis (Scanner)
I Input:

I Sequence of characters
I Output:

I Tokens (basic symbols, groups of successive characters which belong together
logically).

1. In the source text isolate and classify the basic elements that form the language:
Tokens Example
Identifiers Sum, A, id2
Constants 556, 1.5e-5
Strings ”Provide a number”
Keywords, reserved words while, if
Operators ∗ / + −
Others . :

2. Construct tables (symbol table, constant table, string table etc.).

Scanner Lookahead for Tricky Tokens

Listing 4: FORTRAN
! A loop

DO 10 I=1,15
! An assignment DO10I = 1.15

DO 10 I=1.15
! Blanks have no meaning in FORTRAN.

Listing 5: Pascal
VAR i: 15..25;
(* 15 is an integer *)
(* 15. is a real *)
(* 15.. an integer and .. *)

Scanner Return Values

Regular expressions are used to describe tokens, which the scanner returns values in
the form: <type, value>

Listing 6: Example: IF sum < 15 THEN z :
< 5 , 0 > 5 = IF , 0 = lack s va lue
< 7 , 14 > 7 = code f o r i d e n t i f i e r , 14 = entry to

symbol t ab l e
< 9 , 1 > 9 = r e l a t i o n a l operator , 1 = ’<’
< 1 , 15> 1 = code f o r constant , 15 = va lue
< 2 , 0 > 2 = THEN, 0 = lack s va lue
< 7 , 9 > 7 = code f o r i d e n t i f i e r , 9 = entry to

symbol t ab l e
< 3 , 0 > 3 = ’:= ’ , 0 = lack s va lue
< 1 ,153 > 1 = code f o r constant , 153 = va lue

Table: Symbol Table

Index Symbol Data
...
9 z …
...
14 sum …

Syntax Analysis (parsing) 1 – Checking
I Input: Parse tree + symbol table
I Output: Parse tree, error messages
I Function: (1) Determine whether the input sequence forms a structure which is

legal according to the definition of the language.

Listing 7: OK
'IF' 'X' '=' '1' 'THEN' 'X' ':=' '1'

Listing 8: Not OK
'IFF' 'X' '=' '1' 'THEN' 'X' ':=' '1'

which produces the sequence of tokens:

< 7, 23 >
< 7, 16 > {Two identifiers in a row is wrong}
< 9, 0 >

Syntax Analysis (parsing) 2 – Build Trees
Function: (2) Group tokens into syntactic units and construct parse trees which exhibit
the structure.

Figure: Example: A/B*C

<exp>

<exp> <exp>/

<id>
A

<id>
B

<id>
C

*

This represents A/(B*C) i.e.
right-associative (is this
desirable?)
The alternative would be:
(A/B)*C – not the same!
The syntax of a language is
described using a context-free
grammar.

Semantic Analysis and Intermediate Code Generation 1 – More Checking

I Input: Sequence of tokens
I Output: Intermediate code + symbol table temp.variables, information on their

type …
I Function:

Semantic analysis checks items which a grammar can not describe, e.g.
I type compatibility a := i * 1.5
I correct number and type of parameters in calls to procedures as specified in the

procedure declaration.

Semantic Analysis and Intermediate Code Generation 2 - Generate
Intermediate Code

Example: A + B * C

Listing 9: Reverse Polish notation
A B C * +

Listing 10: Three-address code
T1 := B * C
T2 := A + T1

Figure: Abstract syntax tree

+

A *

B C

Semantic Analysis and Intermediate Code Generation 3 - Intermediate
Code

I The intermediate form is used because
it is:
I Simpler than the high-level language

(fewer and simpler operations).
I Not profiled for a given machine

(portability).
I Suitable for optimisation.

I Syntax-directed translation schemes
are used to attach semantic routines
(rules) to syntactic constructions.

Figure: Abstract syntax tree

+

A *

B C

Code Optimization (more appropriately: “Code Improvement”)

I Input: Internal form
I Output: Internal form (hopefully

improved)
I Machine-independent code

optimisation:
I In some way make the machine code

faster or more compact by
transforming the internal form.

Before constant folding After constant folding

a a

2

:=

+

3

:=

5

Code Generation

I Input: Internal form
I Output: Machine code/assembly code
I Function:

1. Register allocation and machine code
generation (or assembly code).

2. Instruction scheduling (specially
important for RISC).

3. Machine-dependent code
optimisation (so-called “peephole
optimisation”).

Listing 11: Z := A+B*C is translated to
assembly code
MOVE 1, B
IMUL 1, C
ADD 1, A
MOVEM 1, Z

www.liu.se

