
1 / 40

TDDB44/TDDD55 Lecture 14:
Compiler Frameworks and Compiler Generators

A (non-exhaustive) survey
with a focus on open-source frameworks

Peter Fritzson, Christoph Kessler and Martin Sjölund

Department of Computer and Information Science
Linköping University

2016-12-09

2 / 40

Overview

Part I Syntax-Based Generators

Part II SemanƟcs-Based Generators

Part III Primarily Back-End Frameworks and Generators

Part IV More Frameworks

3 / 40

Part I

Syntax-Based Generators

4 / 40

Syntax-Based Generators

I Lex and Flex – generates lexical analysers.

I Clones and/or open source alternaƟves exist for many

programming languages. Wikipedia has a reasonable overview.

I Yacc and Bison – generates parsers

I Can be used for syntax-directed translaƟon
I Usually syntax-directed translaƟon is not used (if the compilaƟon

is not completely driven by the parser, it is something else)
I Does not generate semanƟc analysis, intermediate code,

opƟmizaƟon, or code generaƟon
I YACC produces parser which are bad at error management.

I Very many alternaƟves exist, with the grammar specificaƟon

either using an API in the programming language, EBNF, or

something else. Many parser generators (such as ANTLR) allow

the user to adapt the error handling rouƟnes.

5 / 40

Part II

Semantics-Based Generators

6 / 40

RML – A Compiler GeneraƟon System and SpecificaƟon

Language from Natural SemanƟcs/Structured OperaƟonal

SemanƟcs

I Goals

I Efficient code – comparable to hand-wriƩen compilers
I Simplicity – simple to learn and use
I CompaƟbility with “typical natural semanƟcs/operaƟonal

semanƟcs” and with Standard ML

I ProperƟes

I DeterminisƟc
I SeparaƟon of input and output arguments
I StaƟcally strongly typed
I Polymorphic type inference
I Efficient compilaƟon of paƩern-matching

www.ida.liu.se/pelab/~rml – developed around 1999 and used

in OpenModelica unƟl 2014-10-25.

www.ida.liu.se/pelab/~rml

7 / 40

GeneraƟng an Interpreter Implemented in C, using rml2C

8 / 40

GeneraƟng a Compiler Implemented in C, using rml2C

9 / 40

RML Syntax
Goal: Eliminate phletora of special symbols usually found in Natural

SemanƟcs/OperaƟonal SemanƟcs specificaƟons

SoŌware engineering viewpoint: idenƟfiers are more readable in

large specificaƟons

A Natural/OperaƟonal semanƟcs rule:

H1 |− T1 : R1 . . Hn |− Tn : Rn

−−−−−−−−−−−−−−−−−−−−−−
i f <cond >

H |− T : R

Typical RML rule:

r u l e NameX (H1 , T1) => R1 &

. . .

NameY (Hn , Tn) => Rn &

<cond >

−−−−−−−−−−−−−−−−−−−−−−
Relat ionName (H , T) => R

10 / 40

Example: the Exp1 Expression Language

Typical expressions

12 + 5*3

−5 * (10 − 4)

Abstract syntax (defined in RML):

da ta t ype Exp

= INTcons t o f i n t

| PLUSop of Exp * Exp

| SUBop of Exp * Exp

| MULop of Exp * Exp

| DIVop of Exp * Exp

| NEGop of Exp

Figure: Abstract syntax tree of

12 + 5*3

11 / 40

Evaluator for Exp1

R e l a t i o n e v a l : Exp => i n t =

EvaluaƟon of an integer constant

ival is the integer itself:

axiom ev a l (INTcon s t (i v a l))

=> i v a l

EvaluaƟon of an addiƟon node

PLUSop is v3, if v3 is the result of

adding the evaluated results of its

children e1 and e2.

SubtracƟon, mulƟplicaƟon,

division operators have similar

specificaƟons. (we have removed

division below)

r u l e e v a l (e1) => v1 & e v a l (e2) => v2 &

in t _add (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (PLUSop (e1 , e2)) => v3

r u l e e v a l (e1) => v1 & e v a l (e2) => v2 &

i n t _ s ub (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (SUBop (e1 , e2)) => v3

r u l e e v a l (e1) => v1 & e v a l (e2) => v2 &

in t_mu l (v1 , v2) => v3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (MULop (e1 , e2)) => v3

r u l e e v a l (e) => v1 & i n t _neg (v1) => v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e v a l (NEGop (e)) => v2

end

12 / 40

Simple Lookup in Environments Represented as Linked Lists

r e l a t i o n lookup : (Env , I d en t) => Va lue =

(* lookup r e t u r n s the va l ue a s s o c i a t e d wi th an i d e n t i f i e r .

I f no a s s o c i a t i o n i s p resent , lookup w i l l f a i l .

I d e n t i f i e r i d i s found i n the f i r s t p a i r o f the l i s t ,

and va l ue i s r e tu rned . *)

r u l e i d = i d2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ookup ((id2 , v a l ue) : : _ , i d) => va l ue

(* i d i s not found i n the f i r s t p a i r o f the l i s t ,

and lookup w i l l r e c u r s i v e l y s ea r ch the r e s t o f the l i s t .

I f found , v a l ue i s r e tu rned . *)

r u l e not i d = i d2 & lookup (r e s t , i d) => va l ue

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ookup ((id2 , _) : : r e s t , i d) => va l ue

end

(* NOTE : S e a r c h i n g l i n k e d l i s t s i s s low .

RML does not suppor t f an c y hash t a b l e s . . . *)

13 / 40

TranslaƟonal SemanƟcs of the PAM language – Abstract

Syntax to Machine Code

PAM example program:

read x , y ;

wh i l e x <> 99 do

ans : =

(x +1) − (y / 2) ;

w r i t e ans ;

read x , y

end

Simple Machine InstrucƟon Set:

LOAD Load accumu la to r

STO S to r e

ADD Add

SUB Sub t r a c t

MULT Mu l t i p l y

DIV D i v i d e

GET I npu t a va l ue

PUT Output a va l ue

J Jump

JN Jump on neg a t i v e

JP Jump on p o s i t i v e

JNZ Jump on neg a t i v e or ze ro

JPZ Jump on p o s i t i v e or ze ro

JNP Jump on neg a t i v e or p o s i t i v e

LAB Labe l (no ope r a t i on)

HALT Ha l t e x e cu t i on

14 / 40

PAM Example TranslaƟon

PAM example program:

read x , y ;

wh i l e x <> 99 do

ans : =

(x +1) − (y / 2) ;

w r i t e ans ;

read x , y

end

Translated machine code assembly text

GET x STO T2

GET y LOAD T1

L1 LAB SUB T2

LOAD x STO ans

SUB 99 PUT ans

J Z L2 GET x

LOAD x GET y

ADD 1 J L1

STO T1 L2 LAB

LOAD y HALT

DIV 2

Low level representaƟon tree form

MGET (I (x)) MSTO (T (2))

MGET (I (y)) MLOAD(T (1))

MLABEL (L (1)) MB(MSUB , T (2))

MLOAD(I (x)) MSTO (I (ans))

MB(MSUB ,N (9 9)) MPUT (I (ans))

MJ (MJZ , L (2)) MGET (I (x))

MLOAD(I (x)) MGET (I (y))

MB(MADD,N (1)) MJMP(L (1))

MSTO (T (1)) MLABEL (L (2))

MLOAD(I (y)) MHALT

MB(MDIV ,N (2))

15 / 40

Some ApplicaƟons of RML

I Small funcƟonal language with

call-by-name semanƟcs (mini-Freja,

a subset of Haskell)

I Almost full Pascal with some C

features (Petrol)

I Mini-ML including type inference

I SpecificaƟon of full Java 1.2

I SpecificaƟon of Modelica 2.0

Mini-Freja Interpreter performance compared to

Centaur/Typol:

primes Typol RML Typol/RML

3 13s 0.0026s 5000

4 72s 0.0037s 19459

5 1130s 0.0063s 179365

16 / 40

Some AƩribute-Grammar Based Tools

I JASTADD – OO AƩribute grammars

I Ordered AƩribute Grammars

I Uwe Kastens, Anthony M. Sloane. GeneraƟng SoŌware from

SpecificaƟons 2007 ©Jones and BartleƩ Publishers Inc.

www.jbpub.com

www.jbpub.com

17 / 40

Part III

Primarily Back-End Frameworks and
Generators

18 / 40

LCC (LiƩle C Compiler)

Not really a generator, but uses IBURG

I Dragon-book style C compiler

implementaƟon in C

I Very small (20K Loc), well documented,

well tested, widely used

I Open source: http://www.cs.
princeton.edu/software/lcc

I Textbook A retargetable C compiler

[Fraser, Hanson 1995] contains

complete source code

I One-pass compiler, fast

http://www.cs.princeton.edu/software/lcc
http://www.cs.princeton.edu/software/lcc

19 / 40

LCC (LiƩle C Compiler)

I C frontend (hand-craŌed scanner and recursive descent parser)

with own C preprocessor

I Low-level IR

I Basic-block graph containing DAGs of quadruples
I No AST

I Interface to IBURG code generator generator

I Example code generators for MIPS, SPARC, Alpha, x86 processors

I Tree paƩern matching + dynamic programming

I Few opƟmizaƟons:

I local common subexpr. eliminaƟon
I constant folding

I Good choice for source-to-target compiling if a prototype is

needed soon

20 / 40

– Not a Generator, but wide-spread usage

I Gnu Compiler CollecƟon (earlier: Gnu C Compiler)

I Compilers for C, C++, Fortran, Java, ObjecƟve-C, Ada, and more

I someƟmes with own extensions, e.g. Gnu-C

I Open-source, developed since 1985

I Very large (GCC 6.2.0 tarball is 835 MB)

I 3 IR formats (all language independent)

I GENERIC: tree representaƟon for whole funcƟon (also

statements)
I GIMPLE (simple version of GENERIC for opƟmizaƟons) based on

trees but expressions in quadruple form. High-level, low-level

and SSA-low-level form.
I RTL (Register Transfer Language, low-level, Lisp-like) (the

tradiƟonal GCC-IR) only word-sized data types; stack explicit;

statement scope

I Many opƟmizaƟons

21 / 40

I Version 4.x (since 2004) has strong support for retargetable

code generaƟon

I Machine descripƟon in .md file
I ReservaƟon tables for instrucƟon scheduler generaƟon

I Many target architectures

I Note: GCC is not a cross-compiling compiler and does not

include a linker. It compiles code for a set of language, but only

targets a single target plaƞorm. If you want to cross-compile

code, you need to compile a linker and GCC targeƟng this

plaƞorm (you have one GCC and linker toolchain installed for

each target plaƞorm).

I Good choice if one has the Ɵme to get into the framework (and

what you want is a compiler, not a development environment.

Note: Now has a new version numbering where 5.2 is really 4.10.2 and 6.0 is really 4.11.0 (in the old version numbering

scheme).

22 / 40

Figure: Official LLVM dragon logotype. Inspired by the course book.

Dragons, like LLVM, are powerful.

23 / 40

I “Low-level virtual machine”, IR. LLVM is a backend framework.

I Mainly accessed through an API, and is suitable for integraƟon

in an IDE (such as Apple’s XCode).

I Also comes with command-line tools, which can manipulate its

IR (LLVM bitcode), including opƟmizing bitcode to produce an

opƟmized bitcode file or generaƟng an executable from bitcode.

I It includes:

I Front-ends for C/C++/ObjC/OpenMP (clang), can use GCC as a

frontend (dragonegg),
I A debugger (lldb).
I A C++ standard library.
I An experimental linker (lld).

I Third parƟes add more frontends, including for example the

Julia language.

24 / 40

I Compiles to several target plaƞorms (see llc --version)
I LLVM is a cross-compiling compiler.
I You only need one copy of LLVM installed to generate code for all

supported plaƞorms.
I You probably sƟll need a linker and headers for the target

installed (lld is limited).

I Open source (BSD-license), originally developed at Univ. of

Illinois at Urbana Champaign.

25 / 40

Open64 / ORC Open Research Compiler Framework

I Based on SGI Pro-64 Compiler for MIPS processor, wriƩen in

C++, went open source in 2000. DisconƟnued in 2011.

I Several tracks of development (Open64, ORC, ...)

I For Intel Itanium (IA-64) and x86 (IA-32) processors. Also

retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM, ...

“simple to retarget” (?)

I Languages: C, C++, Fortran95 (uses GCC as frontend), OpenMP

and UPC (for parallel programming)

I Industrial strength, with contribuƟons from Intel, Pathscale, ...

I Open source: sourceforge.net/projects/open64/

I 6-layer IR:
I WHIRL (VH, H, M, L, VL) – 5 levels of abstracƟon

I All levels semanƟcally equivalent
I Each level a lower level subset of the higher form

I and target-specific very low-level CGIR

https://sourceforge.net/projects/open64/

26 / 40

ORC: Flow of IR

27 / 40

Open64 / ORC Open Research Compiler

I MulƟ-level IR

I TranslaƟon by lowering

☺ Analysis / OpƟmizaƟon engines can work on the most

appropriate level of abstracƟon

☺ Clean separaƟon of compiler phases

☹ Framework gets larger and slower

I Many opƟmizaƟons, many third-party contributed components

28 / 40

CoSy

A commercial compiler framework primarily focused on backends

www.ace.nl

www.ace.nl

29 / 40

TradiƟonal Compiler Structure

Figure: TradiƟonal compiler model: sequenƟal process

Improvement: Pipelining (by files/modules, classes, funcƟons)

Figure: More modern compiler model with shared symbol table and IR

30 / 40

A CoSy Compiler with Repository Architecture

31 / 40

Engine

I Modular compiler building block

I Performs a well-defined task

I Focus on algorithms, not compiler configuraƟon

I Parameters are handles on the underlying common IR repository

I ExecuƟon may be in a separate process or as subrouƟne call -

the engine writer does not know!

I View of an engine class: the part of the common IR repository

that it can access (scope set by access rights: read, write, create)

I Examples: Analyzers, Lowerers, OpƟmizers, Translators, Support

32 / 40

Composite Engines in CoSy

I Built from simple engines or from other composite engines by

combining engines in interacƟon schemes (Loop, Pipeline, Fork,

Parallel, SpeculaƟve, ...)

I Described in EDL (Engine DescripƟon Language) View defined by

the joint effect of consƟtuent engines A compiler is nothing

more than a large composite engine

ENGINE CLASS comp i l e r (IN u : mirUNIT) {

P I PE L INE

f ron tend (u)

o p t im i z e r (u)

backend (u)

}

33 / 40

A CoSy Compiler

34 / 40

Composite Engines in CoSy

I Component classes (engine class)

I Component instances (engines)

I Basic components are implemented

in C

I InteracƟon schemes (cf. skeletons)

form complex connectors

I SEQUENTIAL
I PIPELINE
I DATAPARALLEL
I SPECULATIVE

I EDL can embed automaƟcally

I Single-call-components into pipes
I p<> means a stream of p-items
I EDL can map their protocols to

each other (p vs p<>)

ENGINE CLASS op t im i z e r (p rocedure p)

{

C on t r o l F l owAna l y s e r c f a ;

CommonSubExprE l iminator c se ;

L o o p V a r i a b l e S i m p l i f i e r l v s ;

P I PE L INE

c f a (p) ;

c se (p) ;

l v s (p) ;

}

ENGINE CLASS comp i l e r (f i l e f)

{

. . .

Token token ;

Module m;

P I PE L INE

/ / l e x e r t a ke s f i l e ,

/ / d e l i v e r s token stream

l e x e r (IN f , OUT token <>) ;

/ / P a r s e r d e l i v e r s a module

pa r s e r (IN token < > , OUT m) ;

sema (m) ;

decompose (m, p<>) ;

/ / here comes a stream of p rocedures

/ / from the module

op t im i z e r (p<>) ;

backend (p<>) ;

}

35 / 40

EvaluaƟon of CoSy

I The outer call layers of the compiler are generated from view

descripƟon specificaƟons

I Adapter, coordinaƟon, communicaƟon, encapsulaƟon
I SequenƟal and parallel implementaƟon can be exchanged
I There is also a non-commercial prototype [MarƟn Alt: On

Parallel CompilaƟon. PhD thesis, 1997, Univ. Saarbrücken]

I Access layer to the repository must be efficient (solved by

generaƟon of macros)

I Because of views, a CoSy-compiler is very easily extensible

I That’s why it is expensive
I ReconfiguraƟon of a compiler within an hour

36 / 40

Part IV

More Frameworks

37 / 40

More Frameworks...

I Cetus

I http://cobweb.ecn.purdue.edu/ParaMount/Cetus/
I C/C++ source-to-source compiler wriƩen in Java.
I Open source

I Tools and generators

I TXL source-to-source transformaƟon system
I ANTLR frontend generator

http://cobweb.ecn.purdue.edu/ParaMount/Cetus/

38 / 40

More Frameworks...

I Some influenƟal frameworks of the 1990s

I SUIF Stanford university intermediate format,

suif.stanford.edu
I Trimaran (for instrucƟon-level parallel processors)

www.trimaran.org
I Polaris (Fortran) UIUC
I Jikes RVM (Java) IBM
I Soot (Java)
I GMD Toolbox / Cocolab Cocktail™ compiler generaƟon tool suite
I and many others ...

I And many more for the embedded domain ...

suif.stanford.edu
www.trimaran.org

39 / 40

The End (?)

“
Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

W. Churchill”
Do you like compiler technology? Learn more?

I Advanced Compiler ConstrucƟon 9 hp (PhD-level)

I TDDD05 Component-based soŌware 6 hp

I Thesis project (exjobb) at PELAB, 30/15/16 hp

40 / 40

www.liu.se

	Syntax-Based Generators
	Semantics-Based Generators
	Primarily Back-End Frameworks and Generators
	More Frameworks

