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Code Optimization – Overview 
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Remarks

 Often multiple levels of IR:   

 high-level IR  (e.g. abstract syntax tree AST),  

 medium-level IR (e.g. quadruples, basic block graph),  

 low-level IR  (e.g. directed acyclic graphs, DAGs)

 do optimization at most appropriate level of abstraction

 code generation is continuous lowering of the IR

towards target code

 ”Postpass optimization”:  

done on binary code (after compilation or without compiling)
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Disadvantages of Compiler Optimizations

 Debugging made difficult

 Code moves around or disappears

 Important to be able to switch off optimization

 Increases compilation time

 May even affect program semantics 

 A = B*C – D + E    A = B*C + E – D

may lead to overflow if B*C+E is a too large number
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Optimization at Different Levels of Program 

Representation

 Source-level optimization

 Made on the source program (text)

 Independent of target machine

 Intermediate code optimization

 Made on the intermediate code (e.g. on AST trees, 

quadruples)

 Mostly target machine independent

 Target-level code optimization

 Made on the target machine code

 Target machine dependent
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Source-level Optimization

At source code level, independent of target machine

 Replace a slow algorithm with a quicker one,

e.g.  Bubble sort   Quick sort

 Poor algorithms are the main source of inefficiency but difficult 

to optimize

 Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]
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Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level

In most cases target machine independent

 Local optimizations within basic blocks (e.g. common 

subexpression elimination)

 Loop optimizations  (e.g. loop interchange to improve data 

locality)

 Global optimization  (e.g. code motion, within procedures)

 Interprocedural optimization (between procedures)
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Target-level Code Optimization

At the target machine binary code level

Dependent on the target machine

 Instruction selection, register allocation, instruction 

scheduling, branch prediction

 Peephole optimization
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Basic Block

 A basic block is a sequence of textually consecutive 

operations (e.g. quadruples)

that contains no branches (except perhaps its last operation) 

and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A.k.a. straight-line code 1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4
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Control Flow Graph

 Nodes: primitive operations (e.g.

quadruples), or basic blocks.

 Edges: control flow transitions

1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4

1:    ( JEQZ,   T1,       5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )
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Basic Block 

Control Flow Graph

 Nodes: basic blocks

 Edges: control flow transitions

1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4

1:    ( JEQZ,   T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )
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B2

B3

B4
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Local Optimization

(within single Basic Block)
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Local Optimization

 Within a single basic block

 Needs no information about other blocks

 Example:  Constant folding (Constant propagation)

 Compute constant expressions at compile time

const int NN = 4;

…

i = 2 + NN; 

j = i * 5 + a;      

const int NN = 4;

…

i = 6;       

j = 30 + a;      
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Local Optimization (cont.)

 Elimination of common subexpressions

A[ i+1 ]  =  B[ i+1 ]; tmp = i+1;

A[ tmp ]  =  B[ tmp ];

D = D + C * B;

A = D + C * B;

T = C * B;

D = D + T;

A = D + T;

NB:  Redefinition of D 

 D+T is not a common 

subexpression! (does not 

refer to the same value)

Common subexpression elimination

builds DAGs (directed acyclic graphs)

from expression trees and forests
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Local Optimization  (cont.)

 Reduction in operator strength

 Replace an expensive operation by a cheaper one

(on the given target machine)

Example:   x = y ** 2      x = y * y

Example:   x = 2.0 * y     x = y + y

Example:   Concatenation in Snobol string language

L := Length(S1 || S2)     L := Length(S1) + Length(S2)
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Some Other Machine-Independent 

Optimizations

 Array-references 

 C = A[I,J] + A[I,J+1]

 Elements are beside each other in memory. 

Ought to be ’’give me the next element’’. 

 Inline expansion of code for small routines 

 x = sqr(y)     x = y * y

 Short-circuit evaluation of tests

 while (a > b) and (c-b < k) and ...

 If false the rest does not need to be evaluated
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More examples of machine-independent 

optimization

 See for example the OpenModelica Compiler 

(https://github.com/OpenModelica/OMCompiler/blob/master/C

ompiler/FrontEnd/ExpressionSimplify.mo) optimizing abstract 

syntax trees
// listAppend(e1,{}) => e1 is O(1) instead of O(len(e1))

case DAE.CALL(path=Absyn.IDENT("listAppend"),

expLst={e1,DAE.LIST(valList={})})

then e1;

// atan2(y,0) = sign(y)*pi/2

case (DAE.CALL(path=Absyn.IDENT("atan2"),expLst={e1,e2}))

guard Expression.isZero(e2)

algorithm

e := Expression.makePureBuiltinCall(

"sign", {e1}, DAE.T_REAL_DEFAULT);

then DAE.BINARY(

DAE.RCONST(1.570796326794896619231321691639751442),

DAE.MUL(DAE.T_REAL_DEFAULT),

e);
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Exercise 1:

Draw a basic block control flow 

graph (BB CFG)

https://github.com/OpenModelica/OMCompiler/blob/master/Compiler/FrontEnd/ExpressionSimplify.mo
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Loop Optimization
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Minimize time spent in a loop

 Time of loop body

 Data locality

 Loop control overhead

What is a loop?

 A strongly connected component

(SCC) in the control flow graph

resp. basic block graph

 SCC strongly connected, i.e., all nodes

can be reached from all others

 Has a unique entry point

 Example:  { B2, B4 }

is an SCC with 2 entry points  not a loop in the strict sense…

1:    ( JEQZ,     5,       0,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4

Loop Optimization
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 Removed the 2nd entry point

from the previous example

 Example:  { B2, B4 }

is an SCC with 1 entry points 

is a loop!

1:    ( JEQZ,     5,       0,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( JUMP,    10,       0,     0 )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4

Loop Example
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Loop Optimization Examples (1)

 Loop-invariant code hoisting

 Move loop-invariant code out of the loop

 Example:

for (i=0;  i<10;  i++)

a[i] = b[i]  + c / d;

tmp = c / d;

for (i=0;  i<10;  i++)

a[i] = b[i]  + tmp;
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Loop Optimization Examples (2)

 Loop unrolling

 Reduces loop overhead (number of tests/branches) by 

duplicating loop body.  Faster code, but code size expands.

 In general case, e.g. when odd number loop limit – make it 

even by handling 1st iteration in an if-statement before loop 

 Example:

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

}

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

a[i] = b[i];

i = i + 1;

}
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Loop Optimization Examples (3)

 Loop interchange

 To improve data locality, inner loop data access within a 

cache block  (reduce cache misses / page faults)

 Example:

for (i=0;  i<N;  i++)

for (j=0;  j<M;  j++)

a[ j ][ i ] = 0.0 ;

for (j=0;  j<M;  j++)

for (i=0;  i<N;  i++)

a[ j ][ i ] = 0.0 ;

....

i

j Faster with 

consequtive 

data accesses 

for inner loop
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Loop Optimization Examples (4)

 Loop fusion

 Merge loops with identical headers

 To improve data locality and reduce number of 

tests/branches

 Example:

for (i=0;  i<N;  i++)

a[ i ] = … ;

for (i=0;  i<N;  i++)

… = … a[ i ] … ;

for (i=0;  i<N;  i++) {

a[ i ] = … ;

… = … a[ i ] … ;

}
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Loop Optimization Examples (5)

 Loop collapsing

 Flatten a multi-dimensional loop nest

 May simplify addressing  

(relies on consecutive array layout in memory)

 Loss of structure

 Example:

for (i=0;  i<N;  i++)

for (j=0;  j<M;  j++)

… a[ i ][ j ] … ;

for ( ij=0;  ij<M*N;  ij++) {

… a[ ij ] … ;

}

....

j

i
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Exercise 2:

Draw CFG and find possible loops
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Global Optimization

(within a single procedure)
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Global Optimization

 More optimization can be achieved if a whole procedure is 
analyzed 
(Whole program analysis is called interprocedural analysis)

 Global optimization is done within a single procedure

 Needs data flow analysis

 Example global optimizations:

 Remove variables which are never referenced. 

 Avoid calculations whose results are not used. 

 Remove code which is not called or reachable 
(i.e., dead code elimination). 

 Code motion 

 Find uninitialized variables
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Data Flow Analysis (1)

 Concepts: 

 Definition: A = 5 A is defined

 Use:          B = A*C A is used

 The flow analysis is performed in two phases, 

forwards and backwards 

 Forward analysis:

 Reaching definitions

 Which definitions apply

at a point p in a flow graph? 

A = 5; A = 7;

...

A = 3;

...

...

B = A;

...
=> B = 3

Point p

Data is flowing from definition to use
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Data Flow Analysis (2), Forward

 Available expressions

 Used to eliminate 

common subexpressions 

over block boundaries

...

A+C

...

...

A+C

...

...

...
...

...

A+C

...Example:

An available expression

A+C
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 Live variables

 A variable v is live at point p if its value 
is used after p before any new 
definition of v is made.

 Example: 

 If variable  A is in a register and is 
dead (not live, will not be referenced) 
the register can be released

Data Flow Analysis (3), Backward

...

v = A;

...

...

c = v;

...

...

v = A;

...

v = 999;

c = v;

...

...

v = A;

x = 35;

c = v;

...Point p

Is there a new

definition of v?

Definition of v
v is live at point p

no new definition

of v in between

First v is not live

at point p, since

v was redefined
p

p
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Data Flow Analysis (4), Backward

 Very-Busy Expressions or 

Anticipated Expressions

 An expression B+C is very-busy

at point p if all paths leading from 

the point p eventually compute 

the value of the expression B+C 

from the values of B and C 

available at p. 

...

D =B+C;

...

...

E=3+B+C;

...

...

B = 3;

C = 8;

...

...

F=B+C+D;

...

Point p
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Remarks

 Need to analyze data dependences to make sure that

transformations do not change the semantics of the code

 Global transformations

need control and data flow analysis

(within a procedure – intraprocedural)

 Interprocedural analysis deals with the whole program

 Covered in more detail in courses

(Discontinued) TDDC86 Compiler optimizations and code

generation

(9 hp Ph.D. student level) DF00100 Advanced Compiler 

Construction
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Target Optimizations

on

Target Binary Code
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Target-level Optimizations

Often included in main code generation step of back end:

 Register allocation

 Better register use  less memory accesses, less energy

 Instruction selection

 Choice of more powerful instructions for same code

 faster + shorter code, possibly using fewer registers too

 Instruction scheduling   reorder instructions for faster code

 Branch prediction  (e.g. guided by profiling data)

 Predication of conditionally executed code

 See lecture on code generation for RISC and superscalar processors (TDDB44)

 Much more in TDDC86 Compiler optimizations and code generation
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Postpass Optimizations (1)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD     A, R0

ADD  1, R0

ST     R0, A

LD     A, R0

…

…

INC    A, R0 

(removed)

(removed

LD      A, R0

…

…

INC   A, R0

(removed)

(removed)

LD     A, R0

…

Cannot remove LD instruction since 

the peephole context is too small (3 

instructions). The INC instruction 

which also loads A is not visible!
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Postpass Optimizations (2)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD     A, R0

ADD  1, R0

ST     R0, A

LD     A, R0

…

…

LD      A, R0

ADD  1, R0

ST      R0, A

LD      A, R0

…

…

LD     A, R0

ADD  1, R0

ST     R0, A

(load removed)

…

Greedy peephole optimization (as on 

previous slide) may miss a more 

profitable alternative optimization  

(here, removal of a load instruction)
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Postpass Optimizations (2)

 Postpass instruction (re)scheduling

 Reconstruct control flow, data dependences 

from binary code

 Reorder instructions to improve execution time

 Works even if no source code available

 Can be retargetable

(parameterized in processor architecture specification)

 E.g.,  aiPop™ tool by AbsInt GmbH,  Saarbrücken


