

Remarks

- Often multiple levels of IR:
 - high-level IR (e.g. abstract syntax tree AST),
 - medium-level IR (e.g. quadruples, basic block graph),
 - low-level IR (e.g. directed acyclic graphs, DAGs)
 - → do optimization at most appropriate level of abstraction
 - → code generation is continuous lowering of the IR towards target code
- "Postpass optimization": done on *binary code* (after compilation or without compiling)

Optimization at Different Levels of Program Representation

- Source-level optimization
 - Made on the source program (text)
 - Independent of target machine
- Intermediate code optimization
 - Made on the intermediate code (e.g. on AST trees, quadruples)
 - Mostly target machine independent

Target-level code optimization

- Made on the target machine code
- Target machine dependent

Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level In most cases target machine independent

- Local optimizations within basic blocks (e.g. common subexpression elimination)
- Loop optimizations (e.g. loop interchange to improve data locality)
- Global optimization (e.g. code motion, within procedures)
- Interprocedural optimization (between procedures)

Target-level Code Optimization

At the target machine binary code level Dependent on the target machine

- Instruction selection, register allocation, instruction scheduling, branch prediction
- Peephole optimization

Basic Block

B)

0)

R4

B, C)

1, A)

A. 1.

Α

C,

B, 2,

- A basic block is a sequence of textually consecutive operations (e.g. quadruples) that contains no branches (except perhaps its last operation) and no branch targets (except perhaps its first operation).
 - · Always executed in same order from entry to exit

6: (SUB

8: (ADD,

7.

(MUL,

(JNEZ

Global Optimization

- More optimization can be achieved if a *whole procedure* is analyzed
 - (Whole program analysis is called interprocedural analysis)
 - Global optimization is done within a single procedure
 - Needs data flow analysis
- Example global optimizations:
 - Remove variables which are never referenced.
 - Avoid calculations whose results are not used.
 - Remove code which is not called or reachable (i.e., *dead code elimination*).
 - Code motion
 - Find uninitialized variables

Data Flow Analysis (1) Data is flowing from definition to use Concepts: • Definition: A is defined A = 5 B = Â*C • Use: A is used The flow analysis is performed in two phases, forwards and backwards Forward analysis: A = 5; A = 7; • Reaching definitions Which definitions apply A = 3; at a point p in a flow graph? B = A: => B = 3 Point p

(9 hp Ph.D. student level) DF00100 Advanced Compiler Construction

Postpass Optimizations (1)

■ "postpass" = done after target code generation

Peephole optimization

- the peephole context is too small (3 instructions). The INC instruction • Very simple and limited which also loads A is not visible!
- Cleanup after code generation or other transformation
- Use a window of very few consecutive instructions
- Could be done in hardware by superscalar processors...

Postpass Optimizations (2)

X

Cannot remove LD instruction since

- Postpass instruction (re)scheduling • Reconstruct control flow, data dependences from binary code
 - · Reorder instructions to improve execution time
 - Works even if no source code available
 - Can be retargetable (parameterized in processor architecture specification)
 - E.g., aiPop™ tool by AbsInt GmbH, Saarbrücken