p—y
JI

§

TDDD55 Compilers and Interpreters
TDDB44 Compiler Construction

Code Optimization

P. Fritzson, C. Kessler, M. Sjolund
IDA, Linkspings universitet, 2016.

TR
Code Optimization — Overview él;;

Goal: Faster code and/or smaller code and/or low energy consumption

Source-to-source IR-level target-level
compiler/optimizer optimizations optimizations

= Emit
Intermediate asm
Source program Back- Target-level
; - code
code representatior End representation
(IR)

N Y ~
arget machine

independent,
language dependent

Mostly target machine Target machine dependent,
independent, mostly language independent
language independent

Fritzson, Kessler, Sjolund. IDA, Linkopings universitet. TDDDS5TDDB44 Compiler Construction, 2016}

Remarks

m Often multiple levels of IR:
e high-level IR (e.g. abstract syntax tree AST),
e medium-level IR (e.g. quadruples, basic block graph),
e low-level IR (e.g. directed acyclic graphs, DAGs)

- do optimization at most appropriate level of abstraction
- code generation is continuous lowering of the IR

towards target code

m "Postpass optimization”:
done on binary code (after compilation or without compiling)

Disadvantages of Compiler Optimizations

m Debugging made difficult
e Code moves around or disappears
e Important to be able to switch off optimization

| [ncreases compilation time

m May even affect program semantics
e A=B*C-D+E = A=B*C+E-D

may lead to overflow if B*C+E is a too large number

m Source-level optimization
e Made on the source program (text)
e Independent of target machine

m Intermediate code optimization

e Made on the intermediate code (e.g. on AST trees,
quadruples)

e Mostly target machine independent
m Target-level code optimization

e Made on the target machine code

e Target machine dependent

TDDDS5TDDBA44 Compiler Construction, 2016}

Fritzson, Kessler, Sjolund IDA Linkpings universitet 5

Fritzson, Kessler, Sjolund, DA, Linkdpings universitet 3 TDDDS5TDDB44 Compiler Construction, 2015} Fritzson, Kessler. Sjolund, IDA, Linkdpings universitet P TDDDSSTDDB44 Compiler Construction, 2016
Optimization at Different Levels of Program #g™ o BT
Representation 3é§§ Source-level Optimization %étg

At source code level, independent of target machine

m Replace a slow algorithm with a quicker one,
e.g. Bubble sort & Quick sort

m Poor algorithms are the main source of inefficiency but difficult
to optimize

m Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

TDDDS5TDDBA4 Compiler Construction, 2016}

Fritzson, Kessler Sjolund, IDA, Link6pings universitet. 6

TR
Intermediate Code Optimization Al‘;

At the intermediate code (e.g., trees, quadruples) level
In most cases target machine independent

m | ocal optimizations within basic blocks (e.g. common
subexpression elimination)

m Loop optimizations (e.g. loop interchange to improve data
locality)

® Global optimization (e.g. code motion, within procedures)
m Interprocedural optimization (between procedures)

Fritzson, Kessler, Sjolund, IDA Link TDDDSSTDDBA44 Compiler Construction, 2016)

AL
Target-level Code Optimization Al‘;

At the target machine binary code level
Dependent on the target machine

| [nstruction selection, register allocation, instruction
scheduling, branch prediction

m Peephole optimization

Fritzson, Kessler, Sjolund. IDA, Linkopings universitet. TDDDS5TDDB44 Compiler Construction, 2016}

5 T A
Basic Block f’bf Control Flow Graph [x ez, Il, 5 0) |
“ag e’ as "
® A basic block is a sequence of textually consecutive = Nodes: primitive operations (e.g. 2_(AseN, 2, 0 A) |
operations (e.g. quadruples) quadruples), or basic blocks. |3' e *A Y |
that contains no branches (except perhgps_lts last opgratlon) m Edges: control flow transitions : ¥ i
and no branch targets (except perhaps its first operation). R TR T |
e Always executed in same order from entry to exit e (s w8, @) B — :
. . 2: (ASGN, 2, 0, A) B2
e A.k.a. straight-line code 1: (JEQz, Ti, 5 0) Bl 5: (ASGN, 23, 0, A) |
-------------- 3: (ADD A, 5 B)
2: (ASGN, 2, 0, A) B2 A ¥
3: (ADD A, 3, B) B (GER Ty & O [6 (suB A 1 B)]
5. (ASGN, 23, 0, A) B3 ¥
4 (JUMP, 7, 0, 0)
““““““““““ 6: (SUB A 1, B) 7. (MU, A B, C) |
5. (ASGN, 23, 0, A) B3 | | \-c-—-—--L__
7. (MUL, A B, C) B4 ¥
6: (SUB A 1, B)
------------------- 8 (ADD, C, 1, A) |8: (ADD, C, 1, A) |
70 (MUL, A, B, C) B4 3
9: (JNEZ, B, 2, 0)
8 (ADD, C, 1, A) 9 (UNEZ, B, 2 0)|
Fritzson, Kessler, Sjolund. IDA, Link6pings universitet 9 9: (UNEZ, B, 2, 0) 2016 Fritzson, Kessler, Sjélund, IDA, Linkbpings universite. 10 TDDDSSTODRpA Compiker Consiruction, 201}
Basic Block TR éﬁg
Control Flow Graph BN GE0z, 11,5 o) R

m Nodes: basic blocks

B2[2. (AsGN, 2, 0, A)
3 (ADD A, 3, B)
4 (JUMP, 7, 0, 0)

m Edges: control flow transitions

1. (JEQZ, T1, 5 0) Bl
2. (ASGN, 2, 0, A

() B2 B3[5: (ASGN, 23, 0, A)
3 (ADD A, 3, B)

6: (SUB A 1, B)

-4 _(JUMP, 7. 0. _0) ___
5. (ASGN, 23, 0, A) B3
6 (suB A 1, B) |\ Bj7 (MU, A B, C)
A (MUEEEARE SNC)IB4 8 (ADD, C, 1, A)
8 (ADD, C, 1, A) 9 (INEZ, B, 2, 0)
9. (JNEZ, B, 2, 0)

Fritzson, Kessler, Sjolund, IDA, Linkopings universitet. 11 TDDDS5TDDB44 Compiler Construction, 2016}

Local Optimization

(within single Basic Block)

TDDDS5TDDBA4 Compiler Construction, 2016}

Fritzson, Kessler Sjolund, IDA, Link6pings universitet. 1;

TR o R
Local Optimization %%l;i Local Optimization (cont.) él}f

® Within a single basic block
e Needs no information about other blocks

m Example: Constant folding (Constant propagation)
e Compute constant expressions at compile time

m Elimination of common subexpressions

—

tmp = i+1;
Altmp] = B[tmp];

Ali+1] = B[i+1];

D=D+C*B; |::> T=C*B;
constint NN = 4; constint NN = 4; A=D+C*B; D=D+T;
A=D+T,;
i=2+NN; i=6;
j=i*5+a; j=30+a;
Common subexpression elimination NB: Redefinition of D
builds DAGs (directed acyclic graphs) - D+Tis not a common
f ion t df N subexpression! (does not
rom expression trees and forests o Dl Cov)
Fritzson, Kessler, Sjolund, IDA, Link T TDDDSSTDDB44 Compiler Construction, 2016 Fritzson, Kessler, Sjolund, IDA, Linkopings universitet 14 TDDOD55TDDBATCompler ConsTuEion 5016
\FO° ONIy, - W05 ONIy,
L S Some Other Machine-Independent S
Local Optimization (cont.) Y Optimizations e

m Reduction in operator strength

e Replace an expensive operation by a cheaper one
(on the given target machine)

Example: x=y**2 > x=y*y

Example: x=2.0*y > x=y+y

Example: Concatenation in Snobol string language

L :=Length(S1|| S2) - L :=Length(S1)+ Length(S2)

Eritzson, Kessler, Sjolund, IDA, Link TDDDS55TDDBA44 Compiler Construction, 2016)

m Array-references
eC = A[I,J] + A[I,J+1]

e Elements are beside each other in memory.
Ought to be "give me the next element”.

m Inline expansion of code for small routines

ox=sqr(y) = x=y*y

m Short-circuit evaluation of tests
e while (a > b) and (c-b < k) and

_—r
o If false the rest does not need to be evaluated

Fritzson, Kessler, Sjolund, IDA, Linképings universitet. 16 TDDDSS5TDDB44 Compiler Construction, 2016}

m See for example the OpenModelica Compiler

) optimizing abstract
syntax trees
// listRhppend(el, {}) => el is 0O(1l) instead of O(len(el))
case DAE.CALL (path=Absyn.IDENT ("listAppend"),
expLst={el,DAE.LIST (valList={})})
then el;
// atan2(y,0) = sign(y)*pi/2
case (DAE.CALL (path=Absyn.IDENT ("atan2"),expLst={el,e2}))
guard Expression.isZero (e2)
algorithm
e := Expression.makePureBuiltinCall (
"sign", {el}, DAE.T_REAL_DEFAULT);

then DAE.BINARY (
DAE.RCONST (1.570796326794896619231321691639751442),
DAE.MUL (DAE.T_REAL DEFAULT),

e);

More examples of machine-independent éﬁg éﬁg
optimization e Wy

Exercise 1:
Draw a basic block control flow
graph (BB CFG)

TDDDS5TDDBA4 Compiler Construction, 2016}

1 TDDDSSTDDBA4 Compiler Construction, 2016

Fritzson, Kessler, Sjolund IDA Linkpings universitet

Fritzson, Kessler Sjolund, IDA, Link6pings universitet. 1

https://github.com/OpenModelica/OMCompiler/blob/master/Compiler/FrontEnd/ExpressionSimplify.mo

W
ot

Loop Optimization

TDDDSSTDDBA44 Compiler Construction, 2016)

Loop Optimization

Minimize time spent in a loop

= Time of loop body B2l2: (ASGN, 2, 0, A)

m Data locality 3: (ADD A, 3, B)

® Loop control overhead 4: (JUMP, 7, 0, 0)

What is a loop? B3|5: (ASGN, 23, 0, A)

m A strongly connected component 6: (SUB A 1, B)
(SCC) in the control flow graph
resp. basic block graph

m SCC strongly connected, i.e., all nodes!
v 7. (MUL, A B, C
can be reached from all others B4 ()
.) 8: (ADD, C, 1, A)
B Has a unique entry point
9: (JNEZ, B, 2, 0)

m Example: {B2,B4}
is an SCC with 2 entry points > not a loop in the strict senge...

TDDDSSTDDB44 Compiler Construction, 2016)

Fritzson, Kessler, Sjolund. IDA, Linkopings universitet. 0

Fritzson, Kessler, Sjolund, IDA Link 1

Y

Loop Example

4 (JUMP, 7, 0, 0)

® Removed the 2nd entry point
from the previous example

B3|5: (ASGN, 23, 0, A)
m Example: {B2,B4} 16: (JUMP, 10, 0, 0)
is an SCC with 1 entry points >
is a loop!

B4l7: (MUL, A B, C)
8 (ADD, C, 1, A)
(INEZ, B, 2, 0)

e,
o

Loop Optimization Examples (1)

P2
EY
,

m Loop-invariant code hoisting
e Move loop-invariant code out of the loop

e Example:

for (i=0; i<10; i++)
afi] = b[i] +c/d;

tmp=c/d;
|:> for (i=0; i<10; i++)

afi] = b[i] +tmp;

TDDDS5TDDBA44 Compiler Construction, 201¢)

®m Loop unrolling

e Reduces loop overhead (number of tests/branches) by
duplicating loop body. Faster code, but code size expands.

e In general case, e.g. when odd number loop limit — make it
even by handling 1st iteration in an if-statement before loop

e Example: i=1;
i=1; while (i <=50) {
while (i <= 50) { I:[; ali] = b[i];

ali] = b[il; i=i+1;
i=i+1; a[i] = b[il;
} i=i+1;
}

R A L R
Loop Optimization Examples (2) %él;é Loop Optimization Examples (3) aél;;

TDDDS5TDDB44 Compiler Construction, 2016}

Fritzson, Kessler, Sjolund IDA Linkpings universitet

m Loop interchange

e To improve data locality, inner loop data access within a
cache block (reduce cache misses/ page faults)

for (j=0; j<M; j++)
|:> for (i=0; i<N; i++)

e Example:
for (i=0; i<N; i++)
for (5=0; j<M; j++)

a[j][i]1=0.0; a[j][i]=0.0;
i mr Faster with
consequtive
data accesses
for inner loop
Fritzson, Kessler, Sjdlund. IDA, Linkopings universitet. 4 TDDDS5TDDB44 Compiler Construction, 2016)

TR

Loop Optimization Examples (4) él:;
m Loop fusion

e Merge loops with identical headers

e To improve data locality and reduce number of

tests/branches (relies on consecutive array layout in memory) j
e Example: e Loss of structure i =
for (i=0; i<N; i++) for (i=0; i<N; i++
) |:> () e Example:
afi]=...; alil=...;
for (i=0; i<N; i++) S =RNaliee for (i=0; i<N; i++) for (ij=0; j<M*N; ij++) {
o=ali]a } for (j=0; j<M; j++) |:> oalijl..;
~-alilll.. }
Fritzson, Kessler Sjolund, IDA, Link 5 TDDDSSTDDBA44 Compiler Construction, 2016] Fritzson, Kessler, Siolund, IDA, Linkopings universitet. 6 TDDDSSTDDBA44 Compiler Construction, 2016)

TR

Loop Optimization Examples (5) él:g
® Loop collapsing

o Flatten a multi-dimensional loop nest

e May simplify addressing

Exercise 2:
Draw CFG and find possible loops

Fritzson, Kessler. Sjolund, DA Linkopings universitet 27 TDDDSSTDDB44 Compiler Construction, 2016

e OV, Pk
Pe v R
P o P o

Global Optimization

(within a single procedure)

Fritzson, Kessler, Sjolund, IDA, Linképings universitet. 28 TDDDSS5TDDB44 Compiler Construction, 2016}

§;§
%%‘Mf
m More optimization can be achieved if a whole procedure is

analyzed
(Whole program analysis is called interprocedural analysis)

e Global optimization is done within a single procedure
o Needs data flow analysis

Global Optimization

m Example global optimizations:
e Remove variables which are never referenced.
e Avoid calculations whose results are not used.

e Remove code which is not called or reachable
(i.e., dead code elimination).

e Code motion
e Find uninitialized variables

Fritzson, Kessler, Sjolund, IDA, Linkopings universitet. TDDDS5TDDBA44 Compiler Construction, 2016}

Data Flow Analysis (1)

®

= Concepts: Data is flowing from definition to use o
e Definiton: ~ A=5 A’is defined
e Use: B =A*C Ais used

m The flow analysis is performed in two phases,
forwards and backwards

m Forward analysis: : ;
o Reaching definitions ~.

e Which definitions apply
at a point p in a flow graph?

=>B=3

Point p

Fritzson, Kessler, Sj6lund, IDA, Linkspings universitet. 0 TDDDSSTDDBA4 Compiler Construction, 2016

Data Flow Analysis (2), Forward f R Data Flow Analysis (3), Backward éﬁ{:’%
R R

m Available expressions

e Used to eliminate
common subexpressions
over block boundaries

| Live variables
e Avariable v is live at point p if its value
is used after p before any new

A X =A
definition of v is made. o oo Y
vis live at pointp —» x = 35;

Definition of v no new definition

V=A; — of v in between c=v
Point
\ e—— p
Is there a new
definition of v?
A+C A+C c=v;
Example: First v is not live V=A:
An available expression atpointp, since p '
A+C l m Example: v was redefined ——— .-
e If variable Ais in a register and is v =999,
Arc dead (not live, will not be referenced) c=v;
the register can be released
Fritzson Kessler Sjolund. DA Link . TODDS5TDDB44 Compiler Construction, 2016 Fritzson, Kessler, Solund, IDA, Linkopings universite, 5 TDDDSSTDDBA4 Compiler Consiruction, 2014
Data Flow Analysis (4), Backward
ata Flow Analysis ackwar g k! g k!
y ' Be Ly Remarks be Y
“n Moy

m Very-Busy Expressions or
Anticipated Expressions

B An expression B+C is very-busy
at point p if all paths leading from
the point p eventually compute
the value of the expression B+C
from the values of B and C
available at p.

B=3; .
c=8 «1— Pointp

m Need to analyze data dependences to make sure that
transformations do not change the semantics of the code

® Global transformations
need control and data flow analysis
(within a procedure — intraprocedural)

m Interprocedural analysis deals with the whole program

m Covered in more detail in courses
(Discontinued) TDDC86 Compiler optimizations and code

generation
(9 hp Ph.D. student level) DF00100 Advanced Compiler
Construction
D =B+C; F=B+C+D; E=3+B+C;
Fritzson, Kessler, Sjslund, IDA, Linki S ersitet 33 TDDDS5TDDB44 Compiler Construction, 2016} Fritzson, Kessler, Sjolund, IDA, Linképings universitet. 34 TDDDSS5TDDB44 Compiler Construction, 2016}
TR TR
él;; Target-level Optimizations él;g

Target Optimizations
on
Target Binary Code

TDDDS5TDDBA44 Compiler Construction, 2016}

Fritzson, Kessler, Sjolund IDA Linkpings universitet c

Often included in main code generation step of back end:
m Register allocation

o Better register use - less memory accesses, less energy
| [nstruction selection

e Choice of more powerful instructions for same code
-> faster + shorter code, possibly using fewer registers too

m [nstruction scheduling = reorder instructions for faster code
m Branch prediction (e.g. guided by profiling data)
m Predication of conditionally executed code

-> See lecture on code generation for RISC and superscalar processors (TDDB44)
-> Much more in TDDC86 Compiler optimizations and code generation

Eritzson, Kessler, Sjolund, IDA, Linkopings universitet. 6 TDDDS5TDDBA4 Compiler Construction, 2016

_i'“w
Postpass Optimizations (1) dl:"

m ”postpass” = done after target code generation

Cannot remove LD instruction since
the peephole context is too small (3
instructions). The INC instruction
which also loads A is not visible!

m Peephole optimization

e Very simple and limited

e Cleanup after code generation or §ther transformation
e Use a window of very few consecutiye ingtructions
e Could be done in hardware by superscalar processors...

TR
Postpass Optimizations (2) Al‘g

m ”postpass” = done after target code generation

Greedy peephole optimization (as on
previous slide) may miss a more
profitable alternative optimization
(here, removal of a load instruction)

nsformation

m Peephole optimization
e Very simple and limited
e Cleanup after code generation or
e Use a window of very few consecu tructions

e Could be done in hardware by supe I processors...

LD A RO INC A RO INC A, RO LD A RO LD A RO LD A /RO
ADD 1, RO (removed) (removed) ADD 1, RO ADD 1, RO ADD 1, RO
ST RO,A |:> (removed (removed) ST RO,A |:> ST RO, A ST RO,A
LD A RO LD A RO |:> LD A RO LD A RO LD A RO |:> (load removed)
Fritzson, Ke: «+ esitet TODDSS ... o Fritzson, Ke: ««« rstet, Too0sg ..
TR
Postpass Optimizations (2) f’l’i

g pust®
B Postpass instruction (re)scheduling

e Reconstruct control flow, data dependences
from binary code

e Reorder instructions to improve execution time
e Works even if no source code available

e Can be retargetable
(parameterized in processor architecture specification)

e E.g., aiPop™ tool by AbsIint GmbH, Saarbriicken

Eritzson, Kessler, Sjolund. IDA. Linkdpings universitet 39 TDDDSSTDDB44 Compiler Construction, 2016}

