
1

P. Fritzson, C. Kessler, M. Sjölund

IDA, Linköpings universitet, 2016.

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Code Optimization

2 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Code Optimization – Overview

Source

code

Intermediate

program

representation

(IR)

Source-to-source

compiler/optimizer

Front

End

IR-level

optimizations
target-level

optimizations

Back-

End
Target-level

representation

Emit

asm

code

Mostly target machine

independent, mostly

language independent

Target machine dependent,

language independent

Goal: Faster code and/or smaller code and/or low energy consumption

Target machine

independent,

language dependent

3 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Remarks

 Often multiple levels of IR:

 high-level IR (e.g. abstract syntax tree AST),

 medium-level IR (e.g. quadruples, basic block graph),

 low-level IR (e.g. directed acyclic graphs, DAGs)

 do optimization at most appropriate level of abstraction

 code generation is continuous lowering of the IR

towards target code

 ”Postpass optimization”:

done on binary code (after compilation or without compiling)

4 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Disadvantages of Compiler Optimizations

 Debugging made difficult

 Code moves around or disappears

 Important to be able to switch off optimization

 Increases compilation time

 May even affect program semantics

 A = B*C – D + E A = B*C + E – D

may lead to overflow if B*C+E is a too large number

5 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Optimization at Different Levels of Program

Representation

 Source-level optimization

 Made on the source program (text)

 Independent of target machine

 Intermediate code optimization

 Made on the intermediate code (e.g. on AST trees,

quadruples)

 Mostly target machine independent

 Target-level code optimization

 Made on the target machine code

 Target machine dependent

6 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Source-level Optimization

At source code level, independent of target machine

 Replace a slow algorithm with a quicker one,

e.g. Bubble sort Quick sort

 Poor algorithms are the main source of inefficiency but difficult

to optimize

 Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

2

7 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level

In most cases target machine independent

 Local optimizations within basic blocks (e.g. common

subexpression elimination)

 Loop optimizations (e.g. loop interchange to improve data

locality)

 Global optimization (e.g. code motion, within procedures)

 Interprocedural optimization (between procedures)

8 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Target-level Code Optimization

At the target machine binary code level

Dependent on the target machine

 Instruction selection, register allocation, instruction

scheduling, branch prediction

 Peephole optimization

9 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Basic Block

 A basic block is a sequence of textually consecutive

operations (e.g. quadruples)

that contains no branches (except perhaps its last operation)

and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A.k.a. straight-line code 1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

10 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Control Flow Graph

 Nodes: primitive operations (e.g.

quadruples), or basic blocks.

 Edges: control flow transitions

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

11 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Basic Block

Control Flow Graph

 Nodes: basic blocks

 Edges: control flow transitions

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

12 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Local Optimization

(within single Basic Block)

3

13 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Local Optimization

 Within a single basic block

 Needs no information about other blocks

 Example: Constant folding (Constant propagation)

 Compute constant expressions at compile time

const int NN = 4;

…

i = 2 + NN;

j = i * 5 + a;

const int NN = 4;

…

i = 6;

j = 30 + a;

14 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Local Optimization (cont.)

 Elimination of common subexpressions

A[i+1] = B[i+1]; tmp = i+1;

A[tmp] = B[tmp];

D = D + C * B;

A = D + C * B;

T = C * B;

D = D + T;

A = D + T;

NB: Redefinition of D

 D+T is not a common

subexpression! (does not

refer to the same value)

Common subexpression elimination

builds DAGs (directed acyclic graphs)

from expression trees and forests

15 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Local Optimization (cont.)

 Reduction in operator strength

 Replace an expensive operation by a cheaper one

(on the given target machine)

Example: x = y ** 2 x = y * y

Example: x = 2.0 * y x = y + y

Example: Concatenation in Snobol string language

L := Length(S1 || S2) L := Length(S1) + Length(S2)

16 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Some Other Machine-Independent

Optimizations

 Array-references

 C = A[I,J] + A[I,J+1]

 Elements are beside each other in memory.

Ought to be ’’give me the next element’’.

 Inline expansion of code for small routines

 x = sqr(y) x = y * y

 Short-circuit evaluation of tests

 while (a > b) and (c-b < k) and ...

 If false the rest does not need to be evaluated

17 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

More examples of machine-independent

optimization

 See for example the OpenModelica Compiler

(https://github.com/OpenModelica/OMCompiler/blob/master/C

ompiler/FrontEnd/ExpressionSimplify.mo) optimizing abstract

syntax trees
// listAppend(e1,{}) => e1 is O(1) instead of O(len(e1))

case DAE.CALL(path=Absyn.IDENT("listAppend"),

expLst={e1,DAE.LIST(valList={})})

then e1;

// atan2(y,0) = sign(y)*pi/2

case (DAE.CALL(path=Absyn.IDENT("atan2"),expLst={e1,e2}))

guard Expression.isZero(e2)

algorithm

e := Expression.makePureBuiltinCall(

"sign", {e1}, DAE.T_REAL_DEFAULT);

then DAE.BINARY(

DAE.RCONST(1.570796326794896619231321691639751442),

DAE.MUL(DAE.T_REAL_DEFAULT),

e);

18 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Exercise 1:

Draw a basic block control flow

graph (BB CFG)

https://github.com/OpenModelica/OMCompiler/blob/master/Compiler/FrontEnd/ExpressionSimplify.mo

4

19 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization

20 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Minimize time spent in a loop

 Time of loop body

 Data locality

 Loop control overhead

What is a loop?

 A strongly connected component

(SCC) in the control flow graph

resp. basic block graph

 SCC strongly connected, i.e., all nodes

can be reached from all others

 Has a unique entry point

 Example: { B2, B4 }

is an SCC with 2 entry points not a loop in the strict sense…

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

Loop Optimization

21 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

 Removed the 2nd entry point

from the previous example

 Example: { B2, B4 }

is an SCC with 1 entry points

is a loop!

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (JUMP, 10, 0, 0)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

Loop Example

22 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization Examples (1)

 Loop-invariant code hoisting

 Move loop-invariant code out of the loop

 Example:

for (i=0; i<10; i++)

a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;

23 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization Examples (2)

 Loop unrolling

 Reduces loop overhead (number of tests/branches) by

duplicating loop body. Faster code, but code size expands.

 In general case, e.g. when odd number loop limit – make it

even by handling 1st iteration in an if-statement before loop

 Example:

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

}

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

a[i] = b[i];

i = i + 1;

}

24 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization Examples (3)

 Loop interchange

 To improve data locality, inner loop data access within a

cache block (reduce cache misses / page faults)

 Example:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[j][i] = 0.0 ;

for (j=0; j<M; j++)

for (i=0; i<N; i++)

a[j][i] = 0.0 ;

....

i

j Faster with

consequtive

data accesses

for inner loop

5

25 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization Examples (4)

 Loop fusion

 Merge loops with identical headers

 To improve data locality and reduce number of

tests/branches

 Example:

for (i=0; i<N; i++)

a[i] = … ;

for (i=0; i<N; i++)

… = … a[i] … ;

for (i=0; i<N; i++) {

a[i] = … ;

… = … a[i] … ;

}

26 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Loop Optimization Examples (5)

 Loop collapsing

 Flatten a multi-dimensional loop nest

 May simplify addressing

(relies on consecutive array layout in memory)

 Loss of structure

 Example:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

… a[i][j] … ;

for (ij=0; ij<M*N; ij++) {

… a[ij] … ;

}

....

j

i

27 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Exercise 2:

Draw CFG and find possible loops

28 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Global Optimization

(within a single procedure)

29 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Global Optimization

 More optimization can be achieved if a whole procedure is
analyzed
(Whole program analysis is called interprocedural analysis)

 Global optimization is done within a single procedure

 Needs data flow analysis

 Example global optimizations:

 Remove variables which are never referenced.

 Avoid calculations whose results are not used.

 Remove code which is not called or reachable
(i.e., dead code elimination).

 Code motion

 Find uninitialized variables

30 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Data Flow Analysis (1)

 Concepts:

 Definition: A = 5 A is defined

 Use: B = A*C A is used

 The flow analysis is performed in two phases,

forwards and backwards

 Forward analysis:

 Reaching definitions

 Which definitions apply

at a point p in a flow graph?

A = 5; A = 7;

...

A = 3;

...

...

B = A;

...
=> B = 3

Point p

Data is flowing from definition to use

6

31 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Data Flow Analysis (2), Forward

 Available expressions

 Used to eliminate

common subexpressions

over block boundaries

...

A+C

...

...

A+C

...

...

...
...

...

A+C

...Example:

An available expression

A+C

32 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

 Live variables

 A variable v is live at point p if its value
is used after p before any new
definition of v is made.

 Example:

 If variable A is in a register and is
dead (not live, will not be referenced)
the register can be released

Data Flow Analysis (3), Backward

...

v = A;

...

...

c = v;

...

...

v = A;

...

v = 999;

c = v;

...

...

v = A;

x = 35;

c = v;

...Point p

Is there a new

definition of v?

Definition of v
v is live at point p

no new definition

of v in between

First v is not live

at point p, since

v was redefined
p

p

33 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Data Flow Analysis (4), Backward

 Very-Busy Expressions or

Anticipated Expressions

 An expression B+C is very-busy

at point p if all paths leading from

the point p eventually compute

the value of the expression B+C

from the values of B and C

available at p.

...

D =B+C;

...

...

E=3+B+C;

...

...

B = 3;

C = 8;

...

...

F=B+C+D;

...

Point p

34 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Remarks

 Need to analyze data dependences to make sure that

transformations do not change the semantics of the code

 Global transformations

need control and data flow analysis

(within a procedure – intraprocedural)

 Interprocedural analysis deals with the whole program

 Covered in more detail in courses

(Discontinued) TDDC86 Compiler optimizations and code

generation

(9 hp Ph.D. student level) DF00100 Advanced Compiler

Construction

35 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Target Optimizations

on

Target Binary Code

36 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Target-level Optimizations

Often included in main code generation step of back end:

 Register allocation

 Better register use less memory accesses, less energy

 Instruction selection

 Choice of more powerful instructions for same code

 faster + shorter code, possibly using fewer registers too

 Instruction scheduling reorder instructions for faster code

 Branch prediction (e.g. guided by profiling data)

 Predication of conditionally executed code

 See lecture on code generation for RISC and superscalar processors (TDDB44)

 Much more in TDDC86 Compiler optimizations and code generation

7

37 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Postpass Optimizations (1)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

INC A, R0

(removed)

(removed

LD A, R0

…

…

INC A, R0

(removed)

(removed)

LD A, R0

…

Cannot remove LD instruction since

the peephole context is too small (3

instructions). The INC instruction

which also loads A is not visible!

38 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Postpass Optimizations (2)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

(load removed)

…

Greedy peephole optimization (as on

previous slide) may miss a more

profitable alternative optimization

(here, removal of a load instruction)

39 TDDD55TDDB44 Compiler Construction, 2016Fritzson, Kessler, Sjölund, IDA, Linköpings universitet.

Postpass Optimizations (2)

 Postpass instruction (re)scheduling

 Reconstruct control flow, data dependences

from binary code

 Reorder instructions to improve execution time

 Works even if no source code available

 Can be retargetable

(parameterized in processor architecture specification)

 E.g., aiPop™ tool by AbsInt GmbH, Saarbrücken

