
Bootstrapping of a Compiler
TDDB44/TDDD55 Optional Material

Martin Sjölund

Department of Computer and Information Science
Linköping University

2015-12-17



How to Implement a Compiler

I Implement your compiler in an existing language (easy).
I Writing your compiler in the language it is trying to compile

(bootstrapping):
I Another compiler already exists, with binaries for your build

architecture.
I Another compiler already exists, but no binaries for your build

architecture (only 32-bit; your system is 64-bit; cross-compiling
+ bootstrapping).

I No other compiler exists.



Bootstrapping Language X: Alternatives
I Implement a small, stupid compiler for X in another language.

Bootstrap using this compiler (A1).
I Bootstrap using a different compiler that implements X (A2):
I Keep a tarball of translated C-code that produces an X

compiler. Compile this old, basic version of the compiler (A3)
I Compile a (subset) version of your compiler (B) using this

other compiler (An). This version might be incomplete
(optimization modules disabled, etc, that An does not
support).

I Compile a full version of your compiler (C), using (B).
I Compile an optimized, full version of your compiler (D) using

(C), targeting (possibly cross-compiling) to your host platform.
I Write an interpreter for X. Feed it your compiler as input, ...
I Or keep a tarball of bytecode for X. Compile a simple

interpreter.
I Interpret X code with a human in the loop, being fed your

compiler as input.



Rationale

I It is a proof that your language is powerful enough to do
something useful.

I Why should I use your programming language if you yourself
use C?

I Only need to learn one language.
I This one language might be a high-level language.
I Improving the performance for the language also improves the

performance of the compiler.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c

I Design of an early MetaModelica language version as an
extended subset of Modelica, spring 2005.

I Implementation of a MetaModelica Compiler (MMC) which
translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.

I Implementation of a MetaModelica Compiler (MMC) which
translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.
I Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.
I Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.
I Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.
I Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (1)
I Implementation of a Modelica compiler using rml2c
I Design of an early MetaModelica language version as an

extended subset of Modelica, spring 2005.
I Implementation of a MetaModelica Compiler (MMC) which

translates MetaModelica into RML intermediate form,
spring-fall 2005.

I Automatically translating the whole OpenModelica compiler,
60 000 lines, from RML to MetaModelica.

I In parallel, developing MDT (Modelica Development Tooling),
including debugger for MMC, 2005-2006.

I Switching to using this MetaModelica 1.0, the MMC
compiler, and MDT for the OpenModelica compiler
development, at that time 3-4 full-time developers. Fall 2006.

I Preliminary implementation of pattern-matching and
exception handling in the OpenModelica compiler, to enable
future bootstrapping. Spring-fall 2008.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.

I Improving the build system, parallel builds. Reaching full
testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.

I Further adding, enhancing, and redesigning MetaModelica
language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping History (2)
I Continuation of the work on better support for

pattern-matching compilation, support for lists, tuples,
records, etc. in OpenModelica. Spring-fall 2009.

I Implementation of higher-order functions (used in
MetaModelica), also in OpenModelica. Fall 2009, spring 2010.

I The bootstrapped compiler supporting most of MetaModelica
2.0, which includes standard Modelica. Fall 2010, spring 2011.

I Adding garbage collection. Fall 2012.
I Improving the build system, parallel builds. Reaching full

testsuite coverage, good performance, and running the tests
nightly. 2013.

I Removing support for MMC.
I Further adding, enhancing, and redesigning MetaModelica

language features, based on usage experience, the Modelica
design effort, and inspiration from functional languages and
languages. Refactoring parts of the compiler to use the
enhanced features.



OpenModelica Bootstrapping

I Start with a tarball of source-code.
I This source-code was at one time generated by OMC

compiled with RML/MMC.
I At some point, OMC was able to generate its own tarball.
I Then support for RML/MMC was dropped and new language

features added to OMC (that RML/MMC did not support).
I At a later time, these new language features were used in the

compiler itself (and a new tarball was generated).
I ...



OpenModelica Cross-Compiling (ARM host, x86 build)
I Start with a tarball of source-code.
I Bootstrap the x86 version of OpenModelica, save this

somewhere. Make clean.
I ./configure –with-omc=path/to/x86/omc
I Cross-compile the ARM version of OpenModelica using the

x86 version of OMC to produce code.
I Note: OMC generates C-code, so you need a cross-compiler

tool-chain installed.
I For gcc, a similar approach is used, but you then use the

regular gcc to compile a version of gcc that runs on x86 but
produces ARM executables (including assemblers and linkers).

I clang (LLVM) is able to produce assembly for multiple targets
using the same compiler (but it does not integrate assemblers,
linkers, or c++ run-times for these targets, so you usually
need to install a gcc cross-compilation tool-chain anyway).



www.liu.se


