
1

Peter Fritzson
IDA, Linköpings universitet, 2015

TDDD55 Compilers and interpreters

TDDB44 Compiler Construction

Compiler Construction
Introduction

1.2TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Introduction, Translators

 Compiler

 High-level language  machine language or assembly language
(Pascal, Ada, Fortran, Java, ..)

 Three phases of execution:

 "Compile time"
1. Source program  object program (compiling)
2. Linking, loading  absolute program

 "Run-time"
3. Input  output

Program in a
representation

language
Translator

Program in another
representation

language

Error messages

1.3TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Interpreters
 High-level language  intermediate code – which is

interpreted, e.g.

 BASIC, LISP, APL

 command languages, e.g. UNIX-shell

 query languages for databases

Interpreter

Input

Source
program

does not translate,
interprets directly

Result

error messages

1.4TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Assembler

 Symbolic machine code  machine code

e.g. MOVE R1,SUM  01..101

1.5TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Simulator, Emulator

 Machine code is interpreted  machine code

 e.g. Simulate a processor on an existing processor.

1.6TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Preprocessor

 Extended ("sugared") high-level language  high-level language

 Example1: IF–THEN–ELSE in FORTRAN:
Before preprocessing:

IF A < B THEN
Z=A

ELSE

Z=B
 After preprocessing:

IF (A.LT.B) THEN GOTO 99
Z=B

GOTO 100
99 Z=A
100 CONTINUE

 Example 2: "File inclusion"
#include "fil1.h"

2

1.7TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Natural Language – Translators

 e.g. Chinese  English

 Very difficult problem, especially to include context.

 Example 1: Visiting relatives can be hard work

 To go and visit relatives ...

 Relatives who are visiting ...

 Example 2: I saw a man with a telescope

1.8TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Why High-Level Languages?

 Understandability (readability)

 Naturalness (languages for different applications)

 Portability (machine-independent)

 Efficient to use (development time) due to

 separation of data and instructions

 typing

 data structures

 blocks

 program-flow primitives

 subroutines

1.9TDDD55/B44, P Fritzson, IDA, LIU, 2015.

The Structure of the Compiler

Logical organisation

 Analysis ("front-end"):

Pull apart the text string (the program) to internal structures,
reveal the structure and meaning of the source program.

 Synthesis ("back-end"):
Construct an object program using information from the
analysis.

Analysis SynthesisIntermediate
program

object
program

source
program

1.10TDDD55/B44, P Fritzson, IDA, LIU, 2015.

The Phases of the Compiler

Error
Management

Table
management

Lexical
analysis

Syntactic
analysis

Semantic
analysis and
Intermediate

code gen

Code
optimization

Code
generation

source program

object program

sequence of tokens:
’IF’ ’sum’ ’=’ ’5’

internal form,
intermediate code

sequence of chars:
’IF sum=5 THEN..’

parse tree, derivation tree

internal form

1.11TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Compiler Passes and Phases

 Pass:

 Physical organisation (phase to phase) dependent on
language and compromises.

 Available memory space, efficiency (time taken), forward
references, portability- and modularity- requirements
determine the number of passes.

 The number of passes: (one-pass, multi-pass)

 The number of times the program is written into a file (or is
read from a file).

 Several phases can be gathered together in one pass.

1.12TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Lexical Analysis (Scanner)

 Input:

 Sequence of characters

 Output:

 Tokens (basic symbols, groups of successive characters which
belong together logically).

1. In the source text isolate and classify the basic elements that form the
language:

2. Construct tables (symbol table, constant table, string table etc.).

Tokens

Identifiers
Constants
Strings
Keywords,reserved words
Operators
Others

Example

Sum, A, id2
556, 1.5E-5
"Provide a number"
while, if
* / + -
, ;

3

1.13TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Scanner Lookahead for Tricky Tokens

 Example1: FORTRAN:

DO 10 I=1,15 is a loop, but
DO 10 I=1.15 is an assignment DO10I = 1.15

NB! This is since blanks have no meaning in FORTRAN.

 Example 2: Pascal

VAR i: 15..25; (15. is a real 15.. 15 is an integer)

1.14TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Scanner Return Values

The scanner returns values in the form
<type, value>

Example: IF sum < 15 THEN z := 153

< 5, 0 > 5 = IF, 0 = lacks value

< 7, 14 > 7 = code for identifier,
14 = entry to symbol table

< 9, 1 > 9 = relational operator, 1 = ‘<’

< 1, 15> 1 = code for constant, 15 = value

< 2, 0 > 2 = THEN, 0 = lacks value

< 7, 9 > 7 = code for identifier,
9 = entry to symbol table

< 3, 0 > 3 = ‘:=’, 0 = lacks value

< 1,153 > 1 = code for constant, 153 = value

Symbol table

9 z

14 sum

Index

.

.

Regular expressions are
used to describe tokens!

1.15TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Syntax Analysis (parsing) 1 – Checking

 Input: Sequence of tokens
 Output: Parse tree, error messages

 Function:

1. Determine whether the input sequence forms a structure which is legal
according to the definition of the language.

Example1: OK.
’IF’ ’X’ ’=’ ’1’ ’THEN’ ’X’ ’:=’ ’1’

Example 2: Not OK.
’IFF’ ’X’ ’=’ ’1’ ’THEN’ ’X’ ’:=’ ’1’
which produces the sequence of tokens:
< 7, 23 >
< 7, 16 > {Two identifiers in a row  wrong! }
< 9, 0 >
...

1.16TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Syntax analysis (parsing) 2 – Build Trees
2. Group tokens into syntactic units and construct parse trees

which exhibit the structure.

Example: A/B*C

<exp>

<exp> <exp>/

<id>
A

*<id>
B

<id>
C

This represents A/(B*C)
i.e. right-associative
(is this desirable?)
The alternative would be:
(A/B)*C – not the same!

The syntax of a language is
described using a context-free
grammar.

1.17TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Semantic Analysis and Intermediate Code
Generation 1 – More Checking.

 Input:

 Parse tree + symbol table

 Output:

 intermediate code + symbol table temp.variables, information on
their type ...

 Function:

 1. Semantic analysis checks items which a grammar can
not describe, e.g.

 type compatibility a := i * 1.5

 correct number and type of parameters in calls to
procedures as specified in the procedure declaration.

1.18TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Semantic Analysis and Intermediate Code
Generation 2 - Generate Intermediate Code

Example: A + B * C in the form of a
parse tree

 Produces in reverse Polish
notation:

A B C * +

 Or three-address code:

T1 := B * C

T2 := A + T1

 Or abstract syntax tree:

 The intermediate form is used
because it is:

 Simpler than the high-level
language (fewer and simpler
operations).

 Not profiled for a given
machine (portability).

 Suitable for optimisation.

 Syntax-directed translation
schemes are used to attach
semantic routines (rules) to
syntactic constructions.

+

A *

B C

4

1.19TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Code Optimization
(more appropriately: ‘‘Code Improvement’’)

 Input: Internal form

 Output: Internal form, hopefully improved.

 Machine-independent code optimisation:

 In some way make the machine code faster or more
compact by transforming the internal form.

1.20TDDD55/B44, P Fritzson, IDA, LIU, 2015.

Code Generation

 Input: Internal form

 Output: Machine code/assembly code

 Function:

1. Register allocation and machine code generation (or assembly code).

2. Instruction scheduling (specially important for RISC)

3. Machine-dependent code optimisation
(so-called ‘‘peephole optimisation’’).

 Example: Z := A+B*C is translated to:

MOVE 1, B

IMUL 1, C

ADD 1, A

MOVEM 1, Z

