
1

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Interpreters

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.

Direct Interpretation

 Given the program source code and the run-time input,

 Interpret the source code directly,
i.e. parse and simulate it, statement by statement
(syntax-directed interpretation)

 UNIX shells (command line interpreter)

 Early interpreters for BASIC, LISP, APL

S

2 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Symbol table

 contains also storage for run-time values of program variables

 Full information about source-level program entities

 Good for debugging

 Very slow

 But ok for small scripts

Hybrid Compiler/Interpreter Scenario

Step 1:
 Translate the source program to an internal form

 E.g. quadruples, postfix, abstract syntax tree
 Or to instructions for an abstract machine

 E.g. P-code for Pascal and Modula-2, Diana for Ada,
JVM bytecode for Java, CIL for C#/.NET

Step 2:

3 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Execute the interpreter
 given the internal form / abstract machine program
 simulate the abstract machine step by step

 More efficient than direct interpretation, but
 still much slower than compiled code, typ. by a factor ~10 to ~100
 Still portable – intermediate form is not processor specific
 Source code cannot be reconstructed completely from intermediate form
 Can be stored compactly
 Easy to write an interpreter (virtual machine)

Example: JVM Bytecode

 Instructions for the JVM (Java Virtual Machine),
an abstract stack machine

 Executes .class or .jar files (loaded when first referenced)

Heap of loaded classes (program text and static data)

 Program counter PC

 Bytecode instructions (postfix order) have

4 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

1 byte opcode with 0 or 1 operand

 span 1 or more bytes, depending on operand size

 Run-time stack: Frame pointer fp, Stack pointer sp

 Could even be implemented in hardware (e.g. Sun MAJC)

JVM Bytecode Interpretation

JVM Instruction
(examples)

Interpretation (by C code) Stack top
before

Stack top
afterwards

iconst_0 Stack[sp++] = 0;
PC++; // code needs 1 byte

()
= don’t care

(I)
= int-value

istore v Stack[fp + v] = Stack[--sp];
PC += 2; // needs 2 bytes

(I) ()

5 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

iload v Stack[sp++] = Stack[fp + v];
PC += 2;

() (I)

iadd Stack[sp-1] = Stack[sp] +
Stack[sp-1]; sp--; PC++;

(I, I) (I)

goto a PC = a; () ()

ifeq a if (Stack[sp--] == 0) PC = a;
else PC += 3;

(I) ()

Just-In-Time (JIT) Compiling

 A.k.a. dynamic translation

 Program execution starts in interpreter as before

 Whenever control flow enters a new unit of bytecode
(unit could be e.g. a class file, a function, a loop, or a basic block):

 Do not interpret it, but call the JIT compiler that translates it to target
code and replaces the unit with a branch to the new target code

6 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 JIT compiling overhead delay at run-time

 paid once per unit (if code can be kept in memory)

 pays often only off if translated code is executed several times
(e.g., a loop body)

Can also be done lazily: Interpret the unit when executed for the first
time. When re-entering the unit, JIT-compile.

Or pre-compile/pre-JIT to native code ahead of time

 Trade-off:
JIT-generated code quality vs. JIT compiler speed (run-time delay)

2

Just-In-Time (JIT) Compiling (cont.)

 Typically performance boost by at least one order of magnitude

 Typically still somewhat slower,
but may even be faster than statically compiled code in some cases

 Can use on-line information from performance counters (e.g. #cache
misses) for dynamic re-optimization and memory re-layout

 Example for Java: Sun JDK HotSpot JVM;
for C#: NET CLR NGEN

7 TDDD55/TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

for C#: .NET CLR, NGEN

