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TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Code Optimization

Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2011.

Code Optimization – Overview 

Intermediate

Source-to-source
compiler/optimizer

IR-level
optimizations

target-level
optimizations

Emit
asm

Goal:   Faster code  and/or  smaller code  and/or  low energy consumption
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Source
code

program
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(IR)

Front
End

Back-
End

Target-level
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asm
code

Mostly target machine 
independent, mostly
language independent

Target machine dependent,
language independent

Target machine
independent,
language dependent

Remarks

 Often multiple levels of IR:   

 high-level IR  (e.g. abstract syntax tree AST),  

 medium-level IR (e.g. quadruples, basic block graph),  

 low-level IR  (e.g. directed acyclic graphs, DAGs)

 do optimization at most appropriate level of abstraction
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 do optimization at most appropriate level of abstraction

 code generation is continuous lowering of the IR
towards target code

 ”Postpass optimization”:  
done on binary code (after compilation or without compiling)

Disadvantages of Compiler Optimizations

 Debugging made difficult

 Code moves around or disappears

 Important to be able to switch off optimization

 Increases compilation time
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 May even affect program semantics 

 A = B*C – D + E    A = B*C + E – D

may lead to overflow if B*C+E is a too large number

Optimization at Different Levels of Program 
Representation

 Source-level optimization

 Made on the source program (text)

 Independent of target machine

 Intermediate code optimization

 Made on the intermediate code (e.g. on AST trees, 
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quadruples)

 Mostly target machine independent

 Target-level code optimization

 Made on the target machine code

 Target machine dependent

Source-level Optimization

At source code level, independent of target machine

 Replace a slow algorithm with a quicker one,
e.g.  Bubble sort   Quick sort

 Poor algorithms are the main source of inefficiency but difficult 
t ti i
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to optimize

 Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]
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Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level

In most cases target machine independent

 Local optimizations within basic blocks (e.g. common 
subexpression elimination)

7 TDDD55TDDB44 Compiler Construction,   2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Loop optimizations  (e.g. loop interchange to improve data 
locality)

 Global optimization  (e.g. code motion, within procedures)

 Interprocedural optimization (between procedures)

Target-level Code Optimization

At the target machine binary code level

Dependent on the target machine

 Instruction selection, register allocation, instruction 
scheduling, branch prediction
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 Peephole optimization

Basic Block

 A basic block is a sequence of textually consecutive 
operations (e.g. quadruples)
that contains no branches (except perhaps its last operation) 
and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A k a straight-line code 1: ( JEQZ T1 5 0 ) B1
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 A.k.a. straight line code 1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B1

B2

B3

B4

Control Flow Graph

 Nodes: primitive operations (e.g.
quadruples), or basic blocks.

 Edges: control flow transitions

1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

B1

B2

1:    ( JEQZ,   T1,       5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5: ( ASGN 23 0 A )
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3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B3

B4

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

Basic Block 
Control Flow Graph

 Nodes: basic blocks

 Edges: control flow transitions

1:    ( JEQZ,    T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

B1

B2

1:    ( JEQZ,   T1,      5,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5: ( ASGN 23 0 A )

B1

B2

B3
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3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B3

B4

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B3

B4

Local Optimization
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(within single Basic Block)
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Local Optimization

 Within a single basic block

 Needs no information about other blocks

 Example:  Constant folding (Constant propagation)

 Compute constant expressions at compile time
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p p p

const int NN = 4;

…

i = 2 + NN; 

j = i * 5 + a;      

const int NN = 4;

…

i = 6;       

j = 30 + a;      

Local Optimization (cont.)

 Elimination of common subexpressions

A[ i+1 ]  =  B[ i+1 ]; tmp = i+1;

A[ tmp ]  =  B[ tmp ];

C *
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D = D + C * B;

A = D + C * B;

T = C * B;

D = D + T;

A = D + T;

NB:  Redefinition of D 
 D+T is not a common 
subexpression! (does not 
refer to the same value)

Common subexpression elimination

builds DAGs (directed acyclic graphs)

from expression trees and forests

Local Optimization  (cont.)

 Reduction in operator strength

 Replace an expensive operation by a cheaper one
(on the given target machine)

Example:   x = y ** 2      x = y * y
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Example:   x = 2.0 * y     x = y + y

Example:   Concatenation in Snobol string language

L := Length(S1 || S2)     L := Length(S1) + Length(S2)

Some Other Machine-Independent 
Optimizations

 Array-references 

 C = A[I,J] + A[I,J+1]

 Elements are beside each other in memory. 
Ought to be ’’give me the next element’’. 
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 Inline expansion of code for small routines 

 x = sqr(y)     x = y * y

 Short-circuit evaluation of tests

 while (a > b) and (c-b < k) and ...

 If false the rest does not need to be evaluated

Loop Optimization
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p p

Minimize time spent in a loop

 Time of loop body

 Data locality

 Loop control overhead

What is a loop?

1:    ( JEQZ,     5,       0,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5: ( ASGN 23 0 A )

B1

B2

B3

Loop Optimization
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p

 A strongly connected component
(SCC) in the control flow graph
resp. basic block graph

 SCC strongly connected, i.e., all nodes
can be reached from all others

 Has a unique entry point

 Example:  { B2, B4 }
is an SCC with 2 entry points  not a loop in the strict sense…

5:    ( ASGN,    23,     0,     A )

6:    ( SUB        A,      1,     B )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B3

B4
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 Removed the 2nd entry point
from the previous example

1:    ( JEQZ,     5,       0,     0 )

2:    ( ASGN,    2,       0,     A )

3:    ( ADD        A,      3,     B )

4:    ( JUMP,    7,       0,     0 )

5: ( ASGN 23 0 A )

B1

B2

B3

Loop Example
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 Example:  { B2, B4 }
is an SCC with 1 entry points 
is a loop!

5:    ( ASGN,    23,     0,     A )

6:    ( JUMP,    10,       0,     0 )

7:    ( MUL,       A,      B,     C )

8:    ( ADD,       C,      1,     A )

9:    ( JNEZ,     B,       2,      0 )

B3

B4

Loop Optimization Examples (1)

 Loop-invariant code hoisting

 Move loop-invariant code out of the loop

 Example:
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for (i=0;  i<10;  i++)

a[i] = b[i]  + c / d;

tmp = c / d;

for (i=0;  i<10;  i++)

a[i] = b[i]  + tmp;

Loop Optimization Examples (2)

 Loop unrolling

 Reduces loop overhead (number of tests/branches) by 
duplicating loop body.  However, code size expands.

 In general case, e.g. when odd number loop limit – make it 
even by handling 1st iteration in an if-statement before loop 

E l
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 Example:

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

}

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

a[i] = b[i];

i = i + 1;

}

Loop Optimization Examples (3)

 Loop interchange

 To improve data locality, inner loop data access within a 
cache block  (reduce cache misses / page faults)

 Example:

for (i=0;  i<N;  i++) for (j=0;  j<M;  j++)
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for (j=0;  j<M;  j++)

a[ j ][ i ] = 0.0 ;

for (i=0;  i<N;  i++)

a[ j ][ i ] = 0.0 ;

....

i

j Faster with 
consequtive 
data accesses 
for inner loop

Loop Optimization Examples (4)

 Loop fusion

 Merge loops with identical headers

 To improve data locality and reduce number of 
tests/branches

 Example:
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for (i=0;  i<N;  i++)

a[ i ] = … ;

for (i=0;  i<N;  i++)

… = … a[ i ] … ;

for (i=0;  i<N;  i++) {

a[ i ] = … ;

… = … a[ i ] … ;

}

Loop Optimization Examples (5)

 Loop collapsing

 Flatten a multi-dimensional loop nest

 May simplify addressing  
(relies on consecutive array layout in memory)

 Loss of structure

j

i
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 Example:

for (i=0;  i<N;  i++)

for (j=0;  j<M;  j++)

… a[ i ][ j ] … ;

for ( ij=0;  ij<M*N;  ij++) {

… a[ ij ] … ;

}

....
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Global Optimization
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(within a single procedure)

Global Optimization

 More optimization can be achieved if a whole procedure is 
analyzed 
(Whole program analysis is called interprocedural analysis)

 Global optimization is done within a single procedure

 Needs data flow analysis

E l l b l ti i ti
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 Example global optimizations:

 Remove variables which are never referenced. 

 Avoid calculations whose results are not used. 

 Remove code which is not called or reachable 
(i.e., dead code elimination). 

 Code motion 

 Find uninitialized variables

Data Flow Analysis (1)

 Concepts: 

 Definition: A = 5 A is defined

 Use:          B = A*C A is used

 The flow analysis is performed in two phases, 
forwards and backwards 

Data is flowing from definition to use
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 Forward analysis:

 Reaching definitions

 Which definitions apply
at a point p in a flow graph? 

A = 5; A = 7;

...
A = 3;

...

...
B = A;

...
=> B = 3

Point p

Data Flow Analysis (2), Forward

 Available expressions

 Used to eliminate 
common subexpressions 
over block boundaries ...

...
...
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...
A+C

...

...
A+C

...

...
A+C

...Example:
An available expression
A+C

 Live variables
 A variable v is live at point p if its value 

is used after p before any new 
definition of v is made.

Data Flow Analysis (3), Backward

...

v = A;

...

v = A;

x = 35;

c = v;

...Point p

Definition of v
v is live at point p
no new definition
of v in between

p
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 Example: 

 If variable  A is in a register and is 
dead (not live, will not be referenced) 
the register can be released

...

...

c = v;

...

...

v = A;

...

v = 999;

c = v;

...

Is there a new
definition of v?

First v is not live
at point p, since
v was redefined

p

Data Flow Analysis (4), Backward

 Very-Busy Expressions or 
Anticipated Expressions

 An expression B+C is very-busy
at point p if all paths leading from 
the point p eventually compute 
the value of the expression B+C 
f th l f B d C

...
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from the values of B and C 
available at p. 

...
D =B+C;

...

...
E=3+B+C;

...

B = 3;
C = 8;

...

...
F=B+C+D;

...

Point p
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Remarks

 Need to analyze data dependences to make sure that 
transformations do not change the semantics of the code

 Global transformations
need control and data flow analysis
(within a procedure – intraprocedural)

 Interprocedural analysis deals with the whole program
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 Interprocedural analysis deals with the whole program

 Covered in more detail in 
TDDC86 Compiler optimizations and code generation

Target Optimizations
on
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Target Binary Code

Target-level Optimizations

Often included in main code generation step of back end:

 Register allocation

 Better register use  less memory accesses, less energy

 Instruction selection

 Choice of more powerful instructions for same code
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p
 faster + shorter code, possibly using fewer registers too

 Instruction scheduling   reorder instructions for faster code

 Branch prediction  (e.g. guided by profiling data)

 Predication of conditionally executed code

 See lecture on code generation for RISC and superscalar processors (TDDB44)

 Much more in TDDC86 Compiler optimizations and code generation

Postpass Optimizations (1)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

Cannot remove LD instruction since 
the peephole context is too small (3 
instructions). The INC instruction 
which also loads A is not visible!
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 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD     A, R0

ADD  1, R0

ST     R0, A

LD     A, R0

…

…

INC    A, R0 

(removed)

(removed

LD      A, R0

…

…

INC   A, R0

(removed)

(removed)

LD     A, R0

…

Postpass Optimizations (2)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

Greedy peephole optimization (as on 
previous slide) may miss a more 
profitable alternative optimization  
(here, removal of a load instruction)
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 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD     A, R0

ADD  1, R0

ST     R0, A

LD     A, R0

…

…

LD      A, R0

ADD  1, R0

ST      R0, A

LD      A, R0

…

…

LD     A, R0

ADD  1, R0

ST     R0, A

(load removed)

…

Postpass Optimizations (2)

 Postpass instruction (re)scheduling

 Reconstruct control flow, data dependences 
from binary code

 Reorder instructions to improve execution time

 Works even if no source code available
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 Can be retargetable
(parameterized in processor architecture specification)

 E.g.,  aiPop™ tool by AbsInt GmbH,  Saarbrücken


