TDDDS5 Compilers and Interpreters 1 "\
TDDB44 Compiler Construction :

Code Optimization

Peter Fritzson, Christoph Kessler,
IDA, Linkdpings universitet, 2011

Code Optimization — Overview

Goal: Faster code and/or smaller code and/or low energy consumption

Source-to-source IR-level

compiler/optimizer optimizations

Intermediate E:r:

Source program Back- Target-level
5 ~ r—»code

code representation| End representation

(IR)

| “ A J
Y Y
Target machine

independent,
language dependent

target-level
optimizations

Mostly target machine  Target machine dependent,
independent, mostly language independent
language independent

P_Fritzson, C. Kessler, IDA, Link6pings universitet TDDDS5TDDBA4 Compiler Construction, 2011

Remarks

P

m Often multiple levels of IR:
e high-level IR (e.g. abstract syntax tree AST),
e medium-level IR (e.g. quadruples, basic block graph),
o low-level IR (e.g. directed acyclic graphs, DAGS)

- do optimization at most appropriate level of abstraction
- code generation is continuous lowering of the IR

towards target code

m "Postpass optimization™:
done on binary code (after compilation or without compiling)

5Ty

P Fritzson, C, Kessler, IDA, Linkspings universitet TDDDS5TDDB44 Compiler Construction, 2011

TR
Disadvantages of Compiler Optimizations {*-‘

® Debugging made difficult
e Code moves around or disappears
e Important to be able to switch off optimization

® |ncreases compilation time
B May even affect program semantics

eA=B*C-D+E = A=B*C+E-D

may lead to overflow if B*C+E is a too large number

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C, Kessler, IDA, Linkspings universitet 4

Optimization at Different Levels of Program 734"
Representation P
m Source-level optimization
e Made on the source program (text)
e Independent of target machine
m |Intermediate code optimization

e Made on the intermediate code (e.g. on AST trees,
quadruples)

e Mostly target machine independent
m Target-level code optimization

e Made on the target machine code

e Target machine dependent

P Fritzson, C,Kessler, IDA, Linkspings universitet o TDDDSSTDDB44 Compiler Construction, 2011

o TR
Source-level Optimization § '

P

At source code level, independent of target machine

m Replace a slow algorithm with a quicker one,
e.g. Bubble sort & Quick sort

m Poor algorithms are the main source of inefficiency but difficult
to optimize

m Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

P Fritzson, C, Kessler, IDA, Linkspings universitet 5 TDDDSSTDDB44 Compiler Construction, 2011




TR
Intermediate Code Optimization =*}'

At the intermediate code (e.g., trees, quadruples) level
In most cases target machine independent

m Local optimizations within basic blocks (e.g. common
subexpression elimination)

m Loop optimizations (e.g. loop interchange to improve data
locality)

® Global optimization (e.g. code motion, within procedures)
m Interprocedural optimization (between procedures)

P_Fritzson, C. Kessler, IDA. Linkopings universitet TDDDS5TDDBA4 Compiler Construction, 2011

=\
wi

z*z

Target-level Code Optimization

A
ot

At the target machine binary code level
Dependent on the target machine

m [nstruction selection, register allocation, instruction
scheduling, branch prediction

m Peephole optimization

P_Fritzson, C. Kessler, IDA. Link6pings universitet TDDDS5TDDBA4 Compiler Construction, 2011

. iR ¥ S
Basic Block &*5 Control Flow Graph ) 2 IL 5 »,f).,ﬂ
m A basic block is a sequence of textually consecutive = Nodes: primitive operations (e.g. 2. (ASGN, 2. 0 A) |

operations (e.g. quadruples) quadruples), or basic blocks. |3. oD *A 5 |
that contains no branches (except perhgps _|ts last opgratlon) ® Edges: control flow transitions : - s &
and no branch targets (except perhaps its first operation). % GG 7 6 O |
e Always executed in same order from entry to exit (g T, & ©) B — :
. . 2: (ASGN, 2, 0, A) B2
e Ak.a. straight-line code 1. (JEQz, T1, 5 0) Bl 5. (ASGN, 23, 0, A) |
——————————————————— 3 (ADD A, 3, B)
2. (ASGN, 2, 0, A) B2 !
3 (ADD A 3 B) G _ T -8 Q) [6: (suB A 1 B) |
5. (ASGN, 23, 0, A) B3 ¥
(E_QUNR_ 7 @ _0) _ _
5. (ASGN, 23, 0, A) B3 & @B & & 5 T (ML A B C) |
7. (MUL, A B, C) B4 L 4
6: (SUB A 1, B)
——————————————————— 8 (ADD, C, 1, A) IB (ADD, C, 1, A) |
7. (MUL, A B, C) B4
9 (IJNEZ, B, 2, 0)
8 (ADD, C, 1, A) 9. (INEZ, B, 2, 0)]
P, Fritzson, C.Kessler, IDA, Linkspings universitet o 9: (JNEZ, B, 2 0) 2011 P, Fritzson, C.Kessler, IDA, Linkspings universitet 10 TODDSSTODM: Compiler Construction, 2011
Basic Block R

Control Flow Graph B (Eoz, T,

® Nodes: basic blocks 1
B2[5. (AsGN, 2, 0, A)

3: (ADD A, 3, B)
4 (JUMP, 7, 0, 0)

/ﬁl: (JEQz, T1, 5 0) Bl
2 (ASGN, 2, 0, A
( ) B2 B3l5 (ASGN, 23, 0, A)

m Edges: control flow transitions

0
5
3 (ADD A, 3, B)
6: (SUB A 1, B)
-4 _(JUMP, 7, 0. 0) __
5. (ASGN, 23, 0, A) B3 ]
fera(sue A LBy B4[7: (MUL, A B, C)
7. (MUL, A B, C) B4 8: (ADD, c, 1, A)
8 (ADD, C, 1, A) 9 (INEZ, B, 2, 0)
9 (JNEZ B, 2 0)

TDDDS5TDDBA4 Compiler Construction, 2011

P Fritzson, C,Kessler, IDA, Linkspings universitet 10

A

Local Optimization

(within single Basic Block)

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C, Kessler, IDA, Linkspings universitet 1




TR
Local Optimization ,Q*f:

P

m Within a single basic block
e Needs no information about other blocks

m Example: Constant folding (Constant propagation)
e Compute constant expressions at compile time

g
Local Optimization (cont.) },*f:

P

® Elimination of common subexpressions

=

tmp = i+1;
Altmp] = B[tmp];

A[i+1] = B[i+1];

D=D+C*B; I:> T=C*B;
constint NN = 4; constint NN = 4; A=D+C*B; D=D+T;
A=D+T;
i=2+NN; i=6;
j=i*5+a; j=30+a;
Common subexpression elimination NB: Redefinition of D
builds DAGs (directed acyclic graphs) AL n_ot O
. subexpression! (does not
from expression trees and forests refer to the same value)
P, Fritzson, ¢ Kessler DA, Linkepings unversite i ToDDS5TODB44 Compier Consiruction, 2011 b, Frizson, G Kessler DA Linkepings unversitet " TODSSTODE A Comprer ConsTretonZo11
o R Some Other Machine-Independent R
Local Optimization (cont.) Be o Optimizations Be o
® Reduction in operator strength m Array-references
e Replace an expensive operation by a cheaper one o C = A[l1,J] + A[1,J+1]
(on the given target machine) o Elements are beside each other in memory.
Ought to be "give me the next element”.
Example: x=y**2 > x=y*y
® Inline expansion of code for small routines
Example: x=2.0*y > x=y+y o x = sqr(y) > x=y*y
Example: Concatenation in Snobol string language m Short-circuit evaluation of tests
ewhile (a > b) and (c-b < k) and ...
L:=Length(S1]| S2) > L :=Length(S1)+ Length(S2) =
o If false the rest does not need to be evaluated
TODDSSTODBA4 Compler Consirucion, 2011 TODDSSTOD44 Compier Consiruction, 2011

P Fritzson, C, Kessler, IDA, Linkspings universitet 15

P Fritzson, C, Kessler, IDA, Linkspings universitet 16

R

P

~

Loop Optimization

Loop Optimization

(JEQZ,

Minimize time spent in a loop

m Time of loop body B2f2. (ASGN, 2, 0, A)
m Data locality 3: (ADD A, 3, B)
m Loop control overhead 4 (JUMP, 7, 0, 0)
What is a loop? B3ls: (AsGN, 23, 0, A)
m Astrongly connected component (SuB A 1, B)

(SCC) in the control flow graph
resp. basic block graph

. A 4
m SCC strongly connected, i.e., all nodes sl (v, A

can be reached from all others
® Has a unigue entry point

o

c)
(ADD, C A)
9. (INEZ, B, 2, 0)

6g)
o

m Example: {B2, B4}
is an SCC with 2 entry points = not a loop in the strict sense...

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C,Kessler, IDA, Linkspings universitet 1

P Fritzson, C, Kessler, IDA, Linkspings universitet 1 TDDDSSTDDBA4 Compiler Construction, 2011




Loop Example

B2l2 (ASGN, 2, 0, A)
3 (ADD A, 3, B)
4 (JUMP, 7, 0, 0)

® Removed the 2nd entry point
from the previous example

B3|5 (ASGN, 23, 0, A)

AL
Loop Optimization Examples (1) &

m Loop-invariant code hoisting
e Move loop-invariant code out of the loop

e Example:

for (i=0; i<10; i++)

tmp=c/d;
|:> for (i=0; i<10; i++)

m Example: {B2,B4} |6: (JUMP, 10, 0, 0) ] )
is an SCC with 1 entry points > afil =b[i] +c/d;
is a loop! afi] = b[i] +tmp;
B4} 7: (MUL, A, B, C)
8 (ADD, C, 1, A)
(JNEZ, B, 2, 0)
e % = s
Loop Optimization Examples (2) Re Loop Optimization Examples (3) Re

® Loop unrolling
e Reduces loop overhead (number of tests/branches) by
duplicating loop body. However, code size expands.

e In general case, e.g. when odd number loop limit — make it
even by handling 1st iteration in an if-statement before loop

m Loop interchange

e To improve data locality, inner loop data access within a
cache block (reduce cache misses / page faults)

for (j=0; j<M; j++)
|:> for (i=0; i<N; i++)

e Example:

for (i=0; i<N; i++)

m Loop fusion
e Merge loops with identical headers

e To improve data locality and reduce number of
tests/branches

e Example:

for (i=0; i<N; i++) for (i=0; i<N; i++){
|:> ali]=...;

e=ali] e

alil=...;
for (i=0; i<N; i++)
e=aalile. }

e Example: i=1; for (j=0; j<M; j++)
= s while (i <= 50) { a[j][i]1=0.0; a[j][i]1=0.0;
while (i <= 50) { |:> alfi] = bfi];
a[i] = bfil; =i+l .
=iv, a(l = i | = Consecuive
} i=i+1; data accesses
for inner loop
}
i ® i *
Loop Optimization Examples (4) Re Loop Optimization Examples (5) Re

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C,Kessler, IDA, Linkspings universitet 3

®m Loop collapsing
o Flatten a multi-dimensional loop nest

e May simplify addressing
(relies on consecutive array layout in memory) j

e Loss of structure i =

e Example:

for (i=0; i<N; i++) for (ij=0; ij<M*N; ij++) {
for (j=0; j<M; j++) I:> oali]..

alillj] .. }

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C, Kessler, IDA, Linkspings universitet 4




P

Global Optimization

(within a single procedure)

Y

P Fritzson, C. Kessler, IDA, Link6pings universitet 25 TDDDS5TDDB44 Compiler Construction, 2011}

R
Global Optimization B o

m More optimization can be achieved if a whole procedure is
analyzed
(Whole program analysis is called interprocedural analysis)

e Global optimization is done within a single procedure
o Needs data flow analysis

m Example global optimizations:
o Remove variables which are never referenced.
e Avoid calculations whose results are not used.

o Remove code which is not called or reachable
(i.e., dead code elimination).

e Code motion
e Find uninitialized variables

P Fritzson, C. Kessler, IDA, Link6pings universitet 26 TDDDS5TDDB44 Compiler Construction, 2011}

Data Flow Analysis (1) 72 \
m Concepts: Data is flowing from definition to use \*"—"‘f
o Definition: ~ A=5 Ais defined
e Use: B=A*C A'is used

® The flow analysis is performed in two phases,
forwards and backwards

® Forward analysis: [ A=5 | [ a=7 |

Data Flow Analysis (2), Forward AL

P

m Available expressions

e Used to eliminate
common subexpressions
over block boundaries

P

| Live variables
e Avariable v is live at point p if its value

is used after p before any new
definition of v is made.

\-/”: A —

- — Point p

Vv=A;

p
vis live at pointp —» x = 35;
no new definition
of vin between

Definition of v
c=v,

Is there a new
definition of v?
CEY% First v is not live
at point p, since P V=A;
m Example: v was redefined ——,
e If variable A s in a register and is v =999;
dead (not live, will not be referenced) c=vy;

the register can be released

e Reaching definitions \ / = =
® Winich definiions apply
at a point p in a flow graph? A+C i
A.;C
=>B=3
Point p

P Fritzson, C.Kessler, IDA, Linkopings universitet TDDDSSTDDBA44 Compiler Construction, 2011 P_Fritzson, C,Kessler, IDA, Linkbpings universitet TDDDS5TDDBA44 Compiler Construction, 2011
Data Flow Analysis (3), Backward “f "\ Data Flow Analysis (4), Backward “f "\

TDDDS5TDDB44 Compiler Construction, 2011

P Fritzson, C,Kessler, IDA, Linkspings universitet o

m Very-Busy Expressions or
Anticipated Expressions

B An expression B+C is very-busy
at point p if all paths leading from
the point p eventually compute
the value of the expression B+C

from the values of B and C B=3
available at p. C=8 «— Pointp
D =§+C; F=B;6+D; E:3:B+C;
TODDSSTODBA4 Compler Consirucion, 2011

P Fritzson, C, Kessler, IDA, Linkspings universitet 30




TR
Remarks d}'

m Need to analyze data dependences to make sure that
transformations do not change the semantics of the code

m Global transformations
need control and data flow analysis
(within a procedure — intraprocedural)

m Interprocedural analysis deals with the whole program

m Covered in more detail in
TDDC86 Compiler optimizations and code generation

P_Fritzson, C. Kessler, IDA. Linkopings universitet 1 TDDDSSTDDB44 Compiler Construction, 2011

Y

g

Target Optimizations
on
Target Binary Code

P Fritzson, C. Kessler DA, Linkdpings universitet TDDDSSTDDBA44 Compiler Construction, 2011

. AL
Target-level Optimizations B o

Often included in main code generation step of back end:
m Register allocation

e Better register use > less memory accesses, less energy
m Instruction selection

e Choice of more powerful instructions for same code
-> faster + shorter code, possibly using fewer registers too

Postpass Optimizations (1) #}3

B "postpass” = done after target code generation

Cannot remove LD instruction since
the peephole context is too small (3
instructions). The INC instruction
which also loads A is not visible!

m Peephole optimization

e Very simple and limited

e Cleanup after code generation or gther transformation
e Use a window of very few consecutliye instructions

® Instruction scheduling - reorder instructions for faster code e Could be done in hardware by superscalar processors...
m Branch prediction (e.g. guided by profiling data)
m Predication of conditionally executed code D &R NS &ylE ICRATRO
ADD 1, RO (removed) (removed)
X ST RO,A |:> (removed (removed)
-> See lecture on code generation for RISC and superscalar processors (TDDB44) |:>
- Much more in TDDC86 Compiler optimizations and code generation LD AR > AR D AR
b Frtzson. Kesslr, DA, Linkepings universiet : TODDSSTODBA4 Compiler Consirucion, 2011 — L ToDDSS” .. ;
;"‘“\ ;"‘“\
Postpass Optimizations (2) —\*j Postpass Optimizations (2) —\*j

oy

B "postpass” = done after target code generation

Greedy peephole optimization (as on
previous slide) may miss a more
profitable alternative optimization
(here, removal of a load instruction)

?nsformation

tructions

m Peephole optimization
e Very simple and limited
e Cleanup after code generation or
e Use a window of very few consecu

e Could be done in hardware by super r processors...

LD A /RO LD A RO LD A, RO

ADD 1, RO ADD 1, RO ADD 1, RO

ST RO,A :> ST RO,A ST RO,A

LD A RO LD A, RO |:> (load removed)
p_Fritzson, ( e+ " To0055] ..« 1

P Fritzson, C, Kessler, IDA, Linkspings universitet 6

B Postpass instruction (re)scheduling

e Reconstruct control flow, data dependences
from binary code

e Reorder instructions to improve execution time
o Works even if no source code available

e Can be retargetable
(parameterized in processor architecture specification)

e E.g., aiPop™ tool by Absint GmbH, Saarbriicken

TDDDS5TDDB44 Compiler Construction, 2011




