
1

TDDD55 Compilers and Interpreters

TDDB44 Compiler Construction

Code Optimization

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2011.

Code Optimization – Overview

Intermediate

Source-to-source
compiler/optimizer

IR-level
optimizations

target-level
optimizations

Emit
asm

Goal: Faster code and/or smaller code and/or low energy consumption

2 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Source
code

program
representation

(IR)

Front
End

Back-
End

Target-level
representation

asm
code

Mostly target machine
independent, mostly
language independent

Target machine dependent,
language independent

Target machine
independent,
language dependent

Remarks

 Often multiple levels of IR:

 high-level IR (e.g. abstract syntax tree AST),

 medium-level IR (e.g. quadruples, basic block graph),

 low-level IR (e.g. directed acyclic graphs, DAGs)

 do optimization at most appropriate level of abstraction

3 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 do optimization at most appropriate level of abstraction

 code generation is continuous lowering of the IR
towards target code

 ”Postpass optimization”:
done on binary code (after compilation or without compiling)

Disadvantages of Compiler Optimizations

 Debugging made difficult

 Code moves around or disappears

 Important to be able to switch off optimization

 Increases compilation time

4 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 May even affect program semantics

 A = B*C – D + E  A = B*C + E – D

may lead to overflow if B*C+E is a too large number

Optimization at Different Levels of Program
Representation

 Source-level optimization

 Made on the source program (text)

 Independent of target machine

 Intermediate code optimization

 Made on the intermediate code (e.g. on AST trees,

5 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

quadruples)

 Mostly target machine independent

 Target-level code optimization

 Made on the target machine code

 Target machine dependent

Source-level Optimization

At source code level, independent of target machine

 Replace a slow algorithm with a quicker one,
e.g. Bubble sort  Quick sort

 Poor algorithms are the main source of inefficiency but difficult
t ti i

6 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

to optimize

 Needs pattern matching, e.g. [K.’96] [di Martino, K. 2000]

2

Intermediate Code Optimization

At the intermediate code (e.g., trees, quadruples) level

In most cases target machine independent

 Local optimizations within basic blocks (e.g. common
subexpression elimination)

7 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Loop optimizations (e.g. loop interchange to improve data
locality)

 Global optimization (e.g. code motion, within procedures)

 Interprocedural optimization (between procedures)

Target-level Code Optimization

At the target machine binary code level

Dependent on the target machine

 Instruction selection, register allocation, instruction
scheduling, branch prediction

8 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Peephole optimization

Basic Block

 A basic block is a sequence of textually consecutive
operations (e.g. quadruples)
that contains no branches (except perhaps its last operation)
and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A k a straight-line code 1: (JEQZ T1 5 0) B1

9 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 A.k.a. straight line code 1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

Control Flow Graph

 Nodes: primitive operations (e.g.
quadruples), or basic blocks.

 Edges: control flow transitions

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

B1

B2

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN 23 0 A)

10 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B3

B4

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

Basic Block
Control Flow Graph

 Nodes: basic blocks

 Edges: control flow transitions

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

B1

B2

1: (JEQZ, T1, 5, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN 23 0 A)

B1

B2

B3

11 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B3

B4

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B3

B4

Local Optimization

12 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(within single Basic Block)

3

Local Optimization

 Within a single basic block

 Needs no information about other blocks

 Example: Constant folding (Constant propagation)

 Compute constant expressions at compile time

13 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

p p p

const int NN = 4;

…

i = 2 + NN;

j = i * 5 + a;

const int NN = 4;

…

i = 6;

j = 30 + a;

Local Optimization (cont.)

 Elimination of common subexpressions

A[i+1] = B[i+1]; tmp = i+1;

A[tmp] = B[tmp];

C *

14 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

D = D + C * B;

A = D + C * B;

T = C * B;

D = D + T;

A = D + T;

NB: Redefinition of D
 D+T is not a common
subexpression! (does not
refer to the same value)

Common subexpression elimination

builds DAGs (directed acyclic graphs)

from expression trees and forests

Local Optimization (cont.)

 Reduction in operator strength

 Replace an expensive operation by a cheaper one
(on the given target machine)

Example: x = y ** 2  x = y * y

15 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example: x = 2.0 * y  x = y + y

Example: Concatenation in Snobol string language

L := Length(S1 || S2)  L := Length(S1) + Length(S2)

Some Other Machine-Independent
Optimizations

 Array-references

 C = A[I,J] + A[I,J+1]

 Elements are beside each other in memory.
Ought to be ’’give me the next element’’.

16 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Inline expansion of code for small routines

 x = sqr(y)  x = y * y

 Short-circuit evaluation of tests

 while (a > b) and (c-b < k) and ...

 If false the rest does not need to be evaluated

Loop Optimization

17 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

p p

Minimize time spent in a loop

 Time of loop body

 Data locality

 Loop control overhead

What is a loop?

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN 23 0 A)

B1

B2

B3

Loop Optimization

18 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

p

 A strongly connected component
(SCC) in the control flow graph
resp. basic block graph

 SCC strongly connected, i.e., all nodes
can be reached from all others

 Has a unique entry point

 Example: { B2, B4 }
is an SCC with 2 entry points  not a loop in the strict sense…

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B3

B4

4

 Removed the 2nd entry point
from the previous example

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN 23 0 A)

B1

B2

B3

Loop Example

19 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Example: { B2, B4 }
is an SCC with 1 entry points 
is a loop!

5: (ASGN, 23, 0, A)

6: (JUMP, 10, 0, 0)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B3

B4

Loop Optimization Examples (1)

 Loop-invariant code hoisting

 Move loop-invariant code out of the loop

 Example:

20 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

for (i=0; i<10; i++)

a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;

Loop Optimization Examples (2)

 Loop unrolling

 Reduces loop overhead (number of tests/branches) by
duplicating loop body. However, code size expands.

 In general case, e.g. when odd number loop limit – make it
even by handling 1st iteration in an if-statement before loop

E l

21 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Example:

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

}

i = 1;

while (i <= 50) {

a[i] = b[i];

i = i + 1;

a[i] = b[i];

i = i + 1;

}

Loop Optimization Examples (3)

 Loop interchange

 To improve data locality, inner loop data access within a
cache block (reduce cache misses / page faults)

 Example:

for (i=0; i<N; i++) for (j=0; j<M; j++)

22 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

for (j=0; j<M; j++)

a[j][i] = 0.0 ;

for (i=0; i<N; i++)

a[j][i] = 0.0 ;

....

i

j Faster with
consequtive
data accesses
for inner loop

Loop Optimization Examples (4)

 Loop fusion

 Merge loops with identical headers

 To improve data locality and reduce number of
tests/branches

 Example:

23 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

for (i=0; i<N; i++)

a[i] = … ;

for (i=0; i<N; i++)

… = … a[i] … ;

for (i=0; i<N; i++) {

a[i] = … ;

… = … a[i] … ;

}

Loop Optimization Examples (5)

 Loop collapsing

 Flatten a multi-dimensional loop nest

 May simplify addressing
(relies on consecutive array layout in memory)

 Loss of structure

j

i

24 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Example:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

… a[i][j] … ;

for (ij=0; ij<M*N; ij++) {

… a[ij] … ;

}

....

5

Global Optimization

25 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(within a single procedure)

Global Optimization

 More optimization can be achieved if a whole procedure is
analyzed
(Whole program analysis is called interprocedural analysis)

 Global optimization is done within a single procedure

 Needs data flow analysis

E l l b l ti i ti

26 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Example global optimizations:

 Remove variables which are never referenced.

 Avoid calculations whose results are not used.

 Remove code which is not called or reachable
(i.e., dead code elimination).

 Code motion

 Find uninitialized variables

Data Flow Analysis (1)

 Concepts:

 Definition: A = 5 A is defined

 Use: B = A*C A is used

 The flow analysis is performed in two phases,
forwards and backwards

Data is flowing from definition to use

27 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Forward analysis:

 Reaching definitions

 Which definitions apply
at a point p in a flow graph?

A = 5; A = 7;

...
A = 3;

...

...
B = A;

...
=> B = 3

Point p

Data Flow Analysis (2), Forward

 Available expressions

 Used to eliminate
common subexpressions
over block boundaries ...

...
...

28 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

...
A+C

...

...
A+C

...

...
A+C

...Example:
An available expression
A+C

 Live variables
 A variable v is live at point p if its value

is used after p before any new
definition of v is made.

Data Flow Analysis (3), Backward

...

v = A;

...

v = A;

x = 35;

c = v;

...Point p

Definition of v
v is live at point p
no new definition
of v in between

p

29 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Example:

 If variable A is in a register and is
dead (not live, will not be referenced)
the register can be released

...

...

c = v;

...

...

v = A;

...

v = 999;

c = v;

...

Is there a new
definition of v?

First v is not live
at point p, since
v was redefined

p

Data Flow Analysis (4), Backward

 Very-Busy Expressions or
Anticipated Expressions

 An expression B+C is very-busy
at point p if all paths leading from
the point p eventually compute
the value of the expression B+C
f th l f B d C

...

30 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

from the values of B and C
available at p.

...
D =B+C;

...

...
E=3+B+C;

...

B = 3;
C = 8;

...

...
F=B+C+D;

...

Point p

6

Remarks

 Need to analyze data dependences to make sure that
transformations do not change the semantics of the code

 Global transformations
need control and data flow analysis
(within a procedure – intraprocedural)

 Interprocedural analysis deals with the whole program

31 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Interprocedural analysis deals with the whole program

 Covered in more detail in
TDDC86 Compiler optimizations and code generation

Target Optimizations
on

32 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Target Binary Code

Target-level Optimizations

Often included in main code generation step of back end:

 Register allocation

 Better register use  less memory accesses, less energy

 Instruction selection

 Choice of more powerful instructions for same code

33 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

p
 faster + shorter code, possibly using fewer registers too

 Instruction scheduling  reorder instructions for faster code

 Branch prediction (e.g. guided by profiling data)

 Predication of conditionally executed code

 See lecture on code generation for RISC and superscalar processors (TDDB44)

 Much more in TDDC86 Compiler optimizations and code generation

Postpass Optimizations (1)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

Cannot remove LD instruction since
the peephole context is too small (3
instructions). The INC instruction
which also loads A is not visible!

34 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

INC A, R0

(removed)

(removed

LD A, R0

…

…

INC A, R0

(removed)

(removed)

LD A, R0

…

Postpass Optimizations (2)

 ”postpass” = done after target code generation

 Peephole optimization

 Very simple and limited

 Cleanup after code generation or other transformation

Greedy peephole optimization (as on
previous slide) may miss a more
profitable alternative optimization
(here, removal of a load instruction)

35 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Use a window of very few consecutive instructions

 Could be done in hardware by superscalar processors…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

LD A, R0

…

…

LD A, R0

ADD 1, R0

ST R0, A

(load removed)

…

Postpass Optimizations (2)

 Postpass instruction (re)scheduling

 Reconstruct control flow, data dependences
from binary code

 Reorder instructions to improve execution time

 Works even if no source code available

36 TDDD55TDDB44 Compiler Construction, 2011P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Can be retargetable
(parameterized in processor architecture specification)

 E.g., aiPop™ tool by AbsInt GmbH, Saarbrücken

