
1

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2010.

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

Need to Automatically Construct
LR Parse Tables: Action and GOTO Table

Construct parse tables from the
grammar as follows:

 First build a GOTOgraph (an NFA)
to recognize viable prefixes

 Make it deterministic (DFA)

Th fill i A ti d G t t bl

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *

2 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Then fill in Action and Goto tables
5 R4 R4
6 R2 R2 * *GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

Example Grammar G

1. <L → L , E
2. | E
3. E → a
4. | b

Classes of LR Parsers/Grammars

 LR(0) – Too weak (no lookahead)

 SLR(1) – Simple LR, 1 token lookahead

 LALR(1) – Most common, 1 token lookahead

 LR(1) – 1 token lookahead – big tables

 LR(k) – k tokens lookahead – Even bigger tables

3 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

() gg

Differences between LR parsers:

 Table size varies widely.

 Errors not discovered as quickly by some variants.

 Different limitations in the language definitions, grammars.

An NFA Recognizing Viable Prefixes

A.k.a. the ”characteristic finite automaton” for a grammar G

 States: LR(0) items (= context-free items) of extended
Grammar (definition, see next page)

 Input stream: The grammar symbols on the stack

 Start state: [S’ → |.S] Final state: [S’ → |S.]

 Transitions:

118a

4 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Transitions:

 ”move dot across symbol” if symbol found next on stack:
A → .B to A → B.
A → .b to A → b.

 -transitions to LR(0)-items for nonterminal productions
from items where the dot precedes that nonterminal:

A → .B to B →.

Handle, Viable Prefix

 Consider a rightmost derivation S *
rm Xu rm u

for a context-free grammar G.

  is called a handle of the right sentential form u,
associated with the rule X rm 

 Each prefix of  is called a viable prefix of G.

5 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example: Grammar G with productions { S -> aSb | c }

 Right sentential forms: e.g. c, acb, aSb, aaaaaSbbbbb,

 For c: Handle: c Viable prefixes: , c
 For acb: Handle: c , a, ac

 For aSb: Handle: aSb , a, aS, aSb

 For aaSbb: Handle: aSb , a, aa, aaS, aaSb

 ...

Right Derivation and Viable Prefixes

Input: a, b, a

Right derivation (handles are underlined, and blue)

<list> rm <list> , <element>

rm <list> , a

rm <list> , <element> , a

6 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

rm

rm <list> , b , a

rm <element> , b, a

rm a , b, a

Some Viable prefixes of the sentential form: <list> , b, a

are

{ ε; <list> ; <list>, ; <list>, b ; <list>, b , ; <list>, b , a }

2

Definition of LR(0) Item

 An LR(0) item of a rule P is a rule with a dot ’’•’’somewhere in
the right side.

Example:

 All LR(0) items of the production

1. <list> → <list> , <element>

are

7 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

are

<list> → • <list> , <element>

<list> → <list> • , <element>

<list> → <list> , • <element>

<list> → <list> , <element> •

 Intuitively an item is interpreted as how much of the rule we have found
and how much remains.

 Items are put together in sets which become the LR analyser’s state.

Informal Construction of GOTO-Graph
(NFA/DFA)

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table

<list> rm <list> , <element>
 <list> a

Example. Find viable prefixes in a
rightmost derivation below,
used for informal construction
of a goto graph

8 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Augmented Grammar G(<sys>)
0. <SYS> → <list> 
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO table.

The graph discovers viable
prefixes.)

rm <list> , a
rm <list> , <element> , a
rm <list> , b , a
rm <element> , b, a
rm a , b, a

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table

0 3
start <list>

21

6

<element>

, <element>

<SYS>  <list>  <list>  <list> , <element>

Informal Construction of GOTO-Graph
(NFA/DFA)

9 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Augmented Grammar G(<sys>)
0. <SYS> → <list> 
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO table.

The graph discovers viable
prefixes.)

6

4

5

a

b

a

b

<element> a

<element> b

<list>  <element>

Example righmost derivation
<list> rm

<list> , <element>
rm <list> , a
rm <list> , <element> , a
rm <list> , b , a
rm <element> , b, a
rm a , b, a

Constructing Sets of LR(0) Items

<SYS> → • <list> |-- Kernel (Basis)

<list> → • <list> , <element>
<list> → • <element>
<element> → • a
<element> → • b

Additional
Closure
(of kernel
items)

<SYS> → <list> • |-- Kernel (Basis)

Set I0

Set I1

Augmented Grammar
G(<sys>)

0. <SYS>→ <list> 
1. <list> → <list , <element>
2. | <element>
3. <element> → a
4. | b

10 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

<list> → <list> • , <element>

(empty closure as ’’•’’
precedes terminals |-- and ,)

Additional
Closure

<list> → <list> , • <element> Kernel (Basis)

<element> → • a
<element> → • b

Additional
Closure

Set I1

Set I2

Set I3, etc.

GOTO Graph with States as
Sets of LR(0) Items

I0
S  • L |
L  • L , E
L  •E
E  • a
E  •b

I1
S  L •

I2
L  L , • E
E  • a
E  • b

I6
L E

start
L ,

E

I3
L  L • , E

,

Based on the
canonical collection
of LR(0) items draw
the GOTO graph.

The GOTO graph discovers
th fi f i ht

11 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

I4
E  a •

I5
E  b •

L E •

a

b

a

bb

those prefixes of right
sentential forms which have
(at most) one handle
furthest to the right in the
prefix.

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

Fill in Action Table from GOTO Graph

i j

a

1. If there is an item
<A> → α • a β ∈ Ii
and
GOTOgraph(Ii , a) = Ij

2. If there is a complete item
(i.e., ends in a dot ’’•’’):
<A> → α• ∈ Ii
Fill in reduce x where
x is the production number for
x: <A> → α

Filled in Action table

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *

12 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

i j

Ii Ij

i shift j

aFill in shift j for row i and
column for symbol a.

Nonterminals

State number

3. If we have
<SYS> → <S> • |--
accept the symbol |--

4. Otherwise error.

Ii : state i (line i, itemset i) 5 R4 R4 * *
6 R2 R2 * *

ACTION table:

3

Table Differences LR(0), SLR(1), LALR(1)

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).

13 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LALR(1) fills in for all those that can follow a certain instance of <A>,

see later

Filling in the GOTO Table

<A> → α • ∈ Ii

If the GOTOgraph(Ii , <A>) = Ij

fill in GOTOtable[i, <A>] = j

i j

<A>

Ii Ij

GOTO t bl

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

14 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

i j

<A>
Nonterminals

State number

Filled in GOTO
table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

GOTO table:

Computing the LR(0) Item Closure
(Detailed Algorithm)
For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):

1. Closure(I) := I (start with the kernel)

2. If [A→.B] in Closure(I)
and  production B → 

then add [B →.] to Closure(I) (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

15 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Remarks:

 For s=[A → B], Closure(s) contains all NFA states reachable
from s via -transitions, i.e., starting from which any substring derivable
from B could be recognized. A.k.a. -closure(s).

 Then apply the well-known subset construction
to transform Closure-NFA -> DFA.

 DFA states will be sets unioning closures of NFA states

Representing Sets of Items
Implementation in Parser Generator
 Any item [A → ] can be represented by 2 integers:

 production number

 position of the dot within the RHS of that production

 The resulting sets often contain ”closure” items (where the dot

118c

16 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

g (
is at the beginning of the RHS).

 Can easily be reconstructed (on demand)
from other (”kernel”) items

Kernel items: start state [S’ → |.S], plus all items
where the dot is not at the left end.

 Store only kernel items explicitly, to save space

GOTOgraph Function and DFA States
Detailed algorithm
Given: Set I of items, grammar symbol X

 GOTOgr(I, X) := U [A→.X] in I Closure ({ [A → X.] })

 To become the state transitions in the DFA

 Now do the subset construction to obtain the DFA states:

17 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

C := Closure({ [S’ → |.S] }) // C: Set of sets of NFA states

repeat

for each set of items I of C:

for each grammar symbol X

if (GOTOgr(I,X) is not empty and not in C)

add GOTOgr(I,X) to C

until no new states are added to C on a round.

Resulting DFA

 All states correspond to some viable prefix

 Final states: contain at least one item with dot to the right

 recognized some handle  reduce may (must) follow

 Other states: handle recognition incomplete -> shift will follow

 The DFA is also called the GOTO graph
(not the same as the LR GOTO Table!!)

120b

18 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(not the same as the LR GOTO Table!!).

 This automaton is deterministic as a FA (i.e., selecting
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)

4

From DFA to parser tables: ACTION
Detailed Algorithm, Summary
1. For each DFA transition Ii  Ij reading a terminal a in 

(thus, Ii contains items of kind [X .a])

 enter S j (shift, new state Ij) in ACTION[i, a]

2. For each DFA final state Ii
(containing a complete item [X .])

 enter R x

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *

19 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(reduce, x = prod. rule number for X )
in ACTION[i, t] ...

 LR(0) parser: for all t in  (all entries in row i)

 SLR(1) parser: for all t in LASLR(i,[X .]) = FOLLOW1(X)

 LALR(1) parser: for all t in LALALR(i,[X .]) (see later)

 Collision with an already existing S or R entry? Conflict!!

3. For each DFA state containing [S’ S.|--]

 enter A in ACTION[i, |--] (accept). NB - Conflict? (as in 2.)

4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *

From DFA to parser tables: GOTO Table
Summary
1. For each DFA transition Ii  Ij reading nonterminal A

(i.e., Ii contains an item [X  .A])

 enter GOTO[i , A] = j

20 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2010.

Conflict Examples in LR Grammars

 Shift – Reduce conflict:

 E  id + E (shift +)
| id (reduce id)

 Reduce – Reduce conflict:

22 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 E  id (reduce id)
Pcall  id (reduce id)

 (Shift – Accept conflict)

 S’  L (accept)
L  L , E (shift ,)

Conflicts in LR Grammars

Observe conflicts in DFA (GOTO graph) kernels
or at the latest when filling the ACTION table.

 Shift-Reduce conflict

 A DFA accepting state has an outgoing transition,
i.e. contains items [X.] and [Y.Z] for some Z in NU

 Reduce Reduce conflict

23 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Reduce-Reduce conflict

 A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [X.] and [Y.], X != Y

 (Shift/Reduce-Accept conflict)

 A DFA accepting state containing [S’S.|--] contains
another item [XS.] or [XS.b]

Only for LR(0) grammars there are no conflicts.

Handling Conflicts in LR Grammars

(Overview):

 Use lookahead

 if lucky, the LR(0) states + a few fixed lookahead sets are
sufficient to eliminate all conflicts in the LR(0)-DFA

SLR(1), LALR(1)

 otherwise use LR(1) items [X  a] (a is look ahead)

24 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 otherwise, use LR(1) items [X., a] (a is look-ahead)
to build new, larger NFA/DFA

expensive (many items/states  very large tables)

 if still conflicts, may try again with k>1  even larger tables

 Rewrite the grammar (factoring / expansion) and retry...

 If nothing helps, re-design your language syntax

 Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either

5

Look-Ahead (LA) Sets

 For a LR(0) item [X → ] in DFA-state Ii, define

lookahead set LA(Ii, [X → ]) (a subset of )

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

 For SLR(1):

LASLR(Ii, [X → .]) = { a in : S’ =>* Xa } = FOLLOW1(X)

25 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LASLR(Ii, [X .]) { a in : S Xa } FOLLOW1(X)

for all Ii with [X → .] in Ii
 depends on nonterminal X only, not on state Ii

 For LALR(1):

LALALR(Ii, [X → .]) = { a in : S’ =>* Xaw and the
LR(0)-DFA started in I0 reaches Ii after reading  }

 usually a subset of FOLLOW1(X), i.e. of SLR LA set

 depends on state Ii

Made it simple:
Is my grammar SLR(1) ?

 Construct the (LR(0)-item) characteristic NFA
and its equivalent DFA (= GOTO graph) as above.

 Consider all conflicts in the DFA states:

 Shift-Reduce:

C id ll i f fli ti it [X] [Y b]

[X  .]
[Y  .b]
...

...
b

26 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Consider all pairs of conflicting items [X.], [Y.b]:
If b in FOLLOW1(X) for any of these  not SLR(1).

 Reduce-Reduce:

Consider all pairs of conflicting items [X.], [Y.]:
If FOLLOW1(X) intersects with FOLLOW1(Y)  not SLR(1).

 (Shift-Accept: similar to Shift-Reduce)

[X  .]
[Y  .]
...

Example: L-Values in C Language

 L-values on left hand side of assignment.
Part of a C grammar:

1. S’ → S

2. S → L = R

3. | R

4 L → *R

27 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

4. L → R

5. | id

6. R → L

 Avoids that R (for R-values) appears as LHS of assignments

 But *R = ... is ok.

 This grammar is LALR(1) but not SLR(1):

Example (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:

 I0 = { [S’.S], [S.L=R], [S.R], [L.*R], [L.id], R.L] }

 I1 = { [S’->S.] }

 I2 = { [S->L.=R], [R->L.] }

 I3 = { [S->R.] }

 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }

Shift = or reduce to R?

28 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 I4 { [L .R], [R .L], [L . R], [L .id] }

 I5 = { [L->id.] }

 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }

 I7 = { [L->*R.] }

 I8 = { [R->L.] }

 I9 = { [S->L=R.] }

FOLLOW1(R) = { | , = }  SLR(1) still shift-reduce conflict in I2
as = does not disambiguate

Example (cont.)
 I0 = { [S’->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.L] }

 I1 = { [S’->S.] }

 I2 = { [S->L.=R], [R->L.] }

 I3 = { [S->R.] }

 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }

 I5 = { [L->id.] }

29 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 I5 { [L id.] }

 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }

 I7 = { [L->*R.] }

 I8 = { [R->L.] }

 I9 = { [S->L=R.] }

LALALR (I2, [R->L.]) = { | }  LALR(1) parser is conflict-free

as computation path I0...I2 does not really allow = following R.
= can only occur after R if ”*R” was encountered before.

LALR(1) Parser Construction

Method 1: (simple but not practical)

1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)

2. Look for sets of LR(1) items that have the same kernel,
and merge them.

3. Construct the ACTION table as for LR(1).
If a conflict is detected, the grammar is not LALR(1).

C GO O f

30 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

4. Construct the GOTOgraph function:
For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTOgr(I1,X), ..., GOTOgr(Ir,X) are identical because the
kernels of I1,...,Ir are identical.

Set GOTOgr(J, X) := U { I: I has the same kernel as GOTOgr(I1,X) }

Method 2: (practical, used) (details see textbook)

1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...

2. Compute lookahead sets by propagation along the GOTOgr(Ij,X) edges
(fixed point iteration).

6

Solve Conflicts by Rewriting the Grammar

 Eliminate Reduce-Reduce Conflict:

Factoring

S  (A) | (B)

A  char | integer | ident

B  float | double | ident

S  (A) | (B) | (C)

A  char | integer

B  float | double

C id t

[A  ident .]
[B  ident .]
... factor

ident

31 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Eliminate Shift-Reduce Conflict: (one token lookahead: ’(’)

Inline-Expansion

C  ident

S  (A) | OptY (B)

OptY  Y | 

Y  ...
A  ...
B  ...

[S  . (A)]
[S  . OptY (B)]
[OptY  .Y]
[OptY  .]
[OptY   .]
[Y  ...] ...

expand
OptY

S  (A) | (B)
| Y (B)

Y  ...
A  ...
B  ...

LR(k) Grammar - Formal Definition

 Let G’ be the augmented grammar for G
(i.e., extended by new start symbol S’

and production rule S’  S |--)

 G is called a LR(k) grammar if

 S’ rm=>* Xw rm=> w and

 S’ rm=>* Yx rm=> y and

p.116

32 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

rm  rm y

 w[1:k] = y[1:k]

imply that  =  and X = Y and x = y = w.

Remark: w, x, y in *  in (N U )* X, Y in N

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

Some grammars are not LR(k) for any fixed k

 Example: S  a B c
B  b B b

| b

 describes language { a b2N+1 c : N >= 0 }

 This grammar is not LR(k) for any fixed k.

33 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Proof: As k is fixed (constant), consider for any n > k:

 S =>* a bn B bn c => a bn b bn c

 S =>* a bn+1 B bn+1 c => a bn+1 b bn+1 c

By the LR(k) definition,

  = a bn  = b w = bn c

  = a bn+1  = b y = bn+1 c

Although w[1:k] = y[1:k], we have  !=   grammar is not LR(k).

The handle cannot be
localized with only limited

lookahead size k

No ambiguous grammar is LR(k) for any fixed k

 S  if E then S
| if E then S else S
| other statements

...

is ambiguous – the following statement has 2 parse trees:

if E1 then if E2 then S1 else S2

34 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1

(cont.)

 Consider situation
(configuration of shift-reduce parser)

--| ... if E then S else ... |--

 Not clear whether to

 shift else

35 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 shift else
(following production 2, i.e. if E then S is not handle), or

 reduce handle if E then S to S (following production 1)

 Any fixed-size lookahead (else and beyond) does not help!

 Suggestion: Rewrite grammar to make it unambiguous

Rewriting the grammar...

S  MatchedS
| OpenS

MatchedS  if E then MatchedS else MatchedS
| other statements

OpenS  if E then S
| if E then MatchedS else OpenS

...

i l bi

36 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to
derive any sentential
form containing an
OpenS nonterminal
from a MatchedS

7

Some grammars are not LR(k) for any fixed k

 Grammar with productions

S  a S a | 

is unambiguous but not LR(k) for any fixed k. (Why?)

 An equivalent LR grammar for the same language is

37 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 An equivalent LR grammar for the same language is

S  a a S | 

LR(1) Items and LR(k) Items

LR(k) parser: Construction similar to LR(0) / SLR(1) parser,
but plan for distinguishing between states for k>0 tokens
lookahead already from the beginning

 States in the LR(0) GOTO graph may be split up

 LR(1) items:
[A->  a] for all productions A-> and all a in 

38 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

[A > , a] for all productions A > and all a in 

 Can be combined for lookahead symbols with equal behavior:
[A-> , a|b] or [A-> , L] for a subset L of 

 Generalized to k>1:
[A-> , a1a2...ak]

Interpretation of [A-> , a] in a state:

 If  not , ignore second component (as in LR(0))

 If =, i.e. [A->. , a], reduce only if next input symbol = a.

LR(1) Parser

 NFA start state is [S’->.S, |]

 Modify computation of Closure(I), GOTO(I,X) and the subset
computation for LR(1) items

 Details see [ASU86, p.232] or [ALSU06, p.261]

 Can have many more states than LR(0) parser

39 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Which may help to resolve some conflicts

Interesting to know...

 For each LR(k) grammar with some constant k>1
there exists an equivalent* grammar G’ that is LR(1).

 For any LL(k) grammar there exists an equivalent LR(k)
grammar (but not vice versa!)

 e.g., language { an bn: n>0 } U { an cn: n > 0 }

40 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

has a LR(0) grammar
but no LL(k) grammar for any constant k.

 Some grammars are LR(0) but not LL(k) for any k

 e.g., S  A b
A  Aa | a (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

