
1

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2010.

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

Need to Automatically Construct
LR Parse Tables: Action and GOTO Table

Construct parse tables from the
grammar as follows:

 First build a GOTOgraph (an NFA)
to recognize viable prefixes

 Make it deterministic (DFA)

Th fill i A ti d G t t bl

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *

2 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Then fill in Action and Goto tables
5 R4 R4
6 R2 R2 * *GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

Example Grammar G

1. <L → L , E
2. | E
3. E → a
4. | b

Classes of LR Parsers/Grammars

 LR(0) – Too weak (no lookahead)

 SLR(1) – Simple LR, 1 token lookahead

 LALR(1) – Most common, 1 token lookahead

 LR(1) – 1 token lookahead – big tables

 LR(k) – k tokens lookahead – Even bigger tables

3 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

() gg

Differences between LR parsers:

 Table size varies widely.

 Errors not discovered as quickly by some variants.

 Different limitations in the language definitions, grammars.

An NFA Recognizing Viable Prefixes

A.k.a. the ”characteristic finite automaton” for a grammar G

 States: LR(0) items (= context-free items) of extended
Grammar (definition, see next page)

 Input stream: The grammar symbols on the stack

 Start state: [S’ → |.S] Final state: [S’ → |S.]

 Transitions:

118a

4 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Transitions:

 ”move dot across symbol” if symbol found next on stack:
A → .B to A → B.
A → .b to A → b.

 -transitions to LR(0)-items for nonterminal productions
from items where the dot precedes that nonterminal:

A → .B to B →.

Handle, Viable Prefix

 Consider a rightmost derivation S *
rm Xu rm u

for a context-free grammar G.

 is called a handle of the right sentential form u,
associated with the rule X rm

 Each prefix of is called a viable prefix of G.

5 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Example: Grammar G with productions { S -> aSb | c }

 Right sentential forms: e.g. c, acb, aSb, aaaaaSbbbbb,

 For c: Handle: c Viable prefixes: , c
 For acb: Handle: c , a, ac

 For aSb: Handle: aSb , a, aS, aSb

 For aaSbb: Handle: aSb , a, aa, aaS, aaSb

 ...

Right Derivation and Viable Prefixes

Input: a, b, a

Right derivation (handles are underlined, and blue)

<list> rm <list> , <element>

rm <list> , a

rm <list> , <element> , a

6 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

rm

rm <list> , b , a

rm <element> , b, a

rm a , b, a

Some Viable prefixes of the sentential form: <list> , b, a

are

{ ε; <list> ; <list>, ; <list>, b ; <list>, b , ; <list>, b , a }

2

Definition of LR(0) Item

 An LR(0) item of a rule P is a rule with a dot ’’•’’somewhere in
the right side.

Example:

 All LR(0) items of the production

1. <list> → <list> , <element>

are

7 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

are

<list> → • <list> , <element>

<list> → <list> • , <element>

<list> → <list> , • <element>

<list> → <list> , <element> •

 Intuitively an item is interpreted as how much of the rule we have found
and how much remains.

 Items are put together in sets which become the LR analyser’s state.

Informal Construction of GOTO-Graph
(NFA/DFA)

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table

<list> rm <list> , <element>
 <list> a

Example. Find viable prefixes in a
rightmost derivation below,
used for informal construction
of a goto graph

8 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Augmented Grammar G(<sys>)
0. <SYS> → <list>
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO table.

The graph discovers viable
prefixes.)

rm <list> , a
rm <list> , <element> , a
rm <list> , b , a
rm <element> , b, a
rm a , b, a

We want to construct a DFA
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the
same as a GOTO-table but
corresponds to an ACTION +
GOTO-table

0 3
start <list>

21

6

<element>

, <element>

<SYS> <list> <list> <list> , <element>

Informal Construction of GOTO-Graph
(NFA/DFA)

9 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Augmented Grammar G(<sys>)
0. <SYS> → <list>
1. <list> → <list> , <element>
2. | <element>
3. <element> → a
4. | b

GOTO table.

The graph discovers viable
prefixes.)

6

4

5

a

b

a

b

<element> a

<element> b

<list> <element>

Example righmost derivation
<list> rm

<list> , <element>
rm <list> , a
rm <list> , <element> , a
rm <list> , b , a
rm <element> , b, a
rm a , b, a

Constructing Sets of LR(0) Items

<SYS> → • <list> |-- Kernel (Basis)

<list> → • <list> , <element>
<list> → • <element>
<element> → • a
<element> → • b

Additional
Closure
(of kernel
items)

<SYS> → <list> • |-- Kernel (Basis)

Set I0

Set I1

Augmented Grammar
G(<sys>)

0. <SYS>→ <list>
1. <list> → <list , <element>
2. | <element>
3. <element> → a
4. | b

10 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

<list> → <list> • , <element>

(empty closure as ’’•’’
precedes terminals |-- and ,)

Additional
Closure

<list> → <list> , • <element> Kernel (Basis)

<element> → • a
<element> → • b

Additional
Closure

Set I1

Set I2

Set I3, etc.

GOTO Graph with States as
Sets of LR(0) Items

I0
S • L |
L • L , E
L •E
E • a
E •b

I1
S L •

I2
L L , • E
E • a
E • b

I6
L E

start
L ,

E

I3
L L • , E

,

Based on the
canonical collection
of LR(0) items draw
the GOTO graph.

The GOTO graph discovers
th fi f i ht

11 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

I4
E a •

I5
E b •

L E •

a

b

a

bb

those prefixes of right
sentential forms which have
(at most) one handle
furthest to the right in the
prefix.

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

Fill in Action Table from GOTO Graph

i j

a

1. If there is an item
<A> → α • a β ∈ Ii
and
GOTOgraph(Ii , a) = Ij

2. If there is a complete item
(i.e., ends in a dot ’’•’’):
<A> → α• ∈ Ii
Fill in reduce x where
x is the production number for
x: <A> → α

Filled in Action table

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *
5 R4 R4 * *

12 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

i j

Ii Ij

i shift j

aFill in shift j for row i and
column for symbol a.

Nonterminals

State number

3. If we have
<SYS> → <S> • |--
accept the symbol |--

4. Otherwise error.

Ii : state i (line i, itemset i) 5 R4 R4 * *
6 R2 R2 * *

ACTION table:

3

Table Differences LR(0), SLR(1), LALR(1)

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).

13 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LALR(1) fills in for all those that can follow a certain instance of <A>,

see later

Filling in the GOTO Table

<A> → α • ∈ Ii

If the GOTOgraph(Ii , <A>) = Ij

fill in GOTOtable[i, <A>] = j

i j

<A>

Ii Ij

GOTO t bl

Example Grammar
1. L → L , E
2. L → E
3. E → a
4. E → b

14 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

i j

<A>
Nonterminals

State number

Filled in GOTO
table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

GOTO table:

Computing the LR(0) Item Closure
(Detailed Algorithm)
For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):

1. Closure(I) := I (start with the kernel)

2. If [A→.B] in Closure(I)
and production B →

then add [B →.] to Closure(I) (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

15 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Remarks:

 For s=[A → B], Closure(s) contains all NFA states reachable
from s via -transitions, i.e., starting from which any substring derivable
from B could be recognized. A.k.a. -closure(s).

 Then apply the well-known subset construction
to transform Closure-NFA -> DFA.

 DFA states will be sets unioning closures of NFA states

Representing Sets of Items
Implementation in Parser Generator
 Any item [A →] can be represented by 2 integers:

 production number

 position of the dot within the RHS of that production

 The resulting sets often contain ”closure” items (where the dot

118c

16 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

g (
is at the beginning of the RHS).

 Can easily be reconstructed (on demand)
from other (”kernel”) items

Kernel items: start state [S’ → |.S], plus all items
where the dot is not at the left end.

 Store only kernel items explicitly, to save space

GOTOgraph Function and DFA States
Detailed algorithm
Given: Set I of items, grammar symbol X

 GOTOgr(I, X) := U [A→.X] in I Closure ({ [A → X.] })

 To become the state transitions in the DFA

 Now do the subset construction to obtain the DFA states:

17 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

C := Closure({ [S’ → |.S] }) // C: Set of sets of NFA states

repeat

for each set of items I of C:

for each grammar symbol X

if (GOTOgr(I,X) is not empty and not in C)

add GOTOgr(I,X) to C

until no new states are added to C on a round.

Resulting DFA

 All states correspond to some viable prefix

 Final states: contain at least one item with dot to the right

 recognized some handle reduce may (must) follow

 Other states: handle recognition incomplete -> shift will follow

 The DFA is also called the GOTO graph
(not the same as the LR GOTO Table!!)

120b

18 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(not the same as the LR GOTO Table!!).

 This automaton is deterministic as a FA (i.e., selecting
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)

4

From DFA to parser tables: ACTION
Detailed Algorithm, Summary
1. For each DFA transition Ii Ij reading a terminal a in

(thus, Ii contains items of kind [X .a])

 enter S j (shift, new state Ij) in ACTION[i, a]

2. For each DFA final state Ii
(containing a complete item [X .])

 enter R x

ACTION table:

state |-- , a b

0 X X S4 S5
1 A S2 * *
2 X X S4 S5
3 R1 R1 * *
4 R3 R3 * *

19 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

(reduce, x = prod. rule number for X)
in ACTION[i, t] ...

 LR(0) parser: for all t in (all entries in row i)

 SLR(1) parser: for all t in LASLR(i,[X .]) = FOLLOW1(X)

 LALR(1) parser: for all t in LALALR(i,[X .]) (see later)

 Collision with an already existing S or R entry? Conflict!!

3. For each DFA state containing [S’ S.|--]

 enter A in ACTION[i, |--] (accept). NB - Conflict? (as in 2.)

4 R3 R3 * *
5 R4 R4 * *
6 R2 R2 * *

From DFA to parser tables: GOTO Table
Summary
1. For each DFA transition Ii Ij reading nonterminal A

(i.e., Ii contains an item [X .A])

 enter GOTO[i , A] = j

20 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

GOTO table:

state L E

0 1 6
1 * *
2 * 3
3 * *
4 * *
5 * *
6 * *

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers

Peter Fritzson, Christoph Kessler,
IDA, Linköpings universitet, 2010.

Conflict Examples in LR Grammars

 Shift – Reduce conflict:

 E id + E (shift +)
| id (reduce id)

 Reduce – Reduce conflict:

22 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 E id (reduce id)
Pcall id (reduce id)

 (Shift – Accept conflict)

 S’ L (accept)
L L , E (shift ,)

Conflicts in LR Grammars

Observe conflicts in DFA (GOTO graph) kernels
or at the latest when filling the ACTION table.

 Shift-Reduce conflict

 A DFA accepting state has an outgoing transition,
i.e. contains items [X.] and [Y.Z] for some Z in NU

 Reduce Reduce conflict

23 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Reduce-Reduce conflict

 A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [X.] and [Y.], X != Y

 (Shift/Reduce-Accept conflict)

 A DFA accepting state containing [S’S.|--] contains
another item [XS.] or [XS.b]

Only for LR(0) grammars there are no conflicts.

Handling Conflicts in LR Grammars

(Overview):

 Use lookahead

 if lucky, the LR(0) states + a few fixed lookahead sets are
sufficient to eliminate all conflicts in the LR(0)-DFA

SLR(1), LALR(1)

 otherwise use LR(1) items [X a] (a is look ahead)

24 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 otherwise, use LR(1) items [X., a] (a is look-ahead)
to build new, larger NFA/DFA

expensive (many items/states very large tables)

 if still conflicts, may try again with k>1 even larger tables

 Rewrite the grammar (factoring / expansion) and retry...

 If nothing helps, re-design your language syntax

 Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either

5

Look-Ahead (LA) Sets

 For a LR(0) item [X →] in DFA-state Ii, define

lookahead set LA(Ii, [X →]) (a subset of)

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

 For SLR(1):

LASLR(Ii, [X → .]) = { a in : S’ =>* Xa } = FOLLOW1(X)

25 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

LASLR(Ii, [X .]) { a in : S Xa } FOLLOW1(X)

for all Ii with [X → .] in Ii
 depends on nonterminal X only, not on state Ii

 For LALR(1):

LALALR(Ii, [X → .]) = { a in : S’ =>* Xaw and the
LR(0)-DFA started in I0 reaches Ii after reading }

 usually a subset of FOLLOW1(X), i.e. of SLR LA set

 depends on state Ii

Made it simple:
Is my grammar SLR(1) ?

 Construct the (LR(0)-item) characteristic NFA
and its equivalent DFA (= GOTO graph) as above.

 Consider all conflicts in the DFA states:

 Shift-Reduce:

C id ll i f fli ti it [X] [Y b]

[X .]
[Y .b]
...

...
b

26 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Consider all pairs of conflicting items [X.], [Y.b]:
If b in FOLLOW1(X) for any of these not SLR(1).

 Reduce-Reduce:

Consider all pairs of conflicting items [X.], [Y.]:
If FOLLOW1(X) intersects with FOLLOW1(Y) not SLR(1).

 (Shift-Accept: similar to Shift-Reduce)

[X .]
[Y .]
...

Example: L-Values in C Language

 L-values on left hand side of assignment.
Part of a C grammar:

1. S’ → S

2. S → L = R

3. | R

4 L → *R

27 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

4. L → R

5. | id

6. R → L

 Avoids that R (for R-values) appears as LHS of assignments

 But *R = ... is ok.

 This grammar is LALR(1) but not SLR(1):

Example (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:

 I0 = { [S’.S], [S.L=R], [S.R], [L.*R], [L.id], R.L] }

 I1 = { [S’->S.] }

 I2 = { [S->L.=R], [R->L.] }

 I3 = { [S->R.] }

 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }

Shift = or reduce to R?

28 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 I4 { [L .R], [R .L], [L . R], [L .id] }

 I5 = { [L->id.] }

 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }

 I7 = { [L->*R.] }

 I8 = { [R->L.] }

 I9 = { [S->L=R.] }

FOLLOW1(R) = { | , = } SLR(1) still shift-reduce conflict in I2
as = does not disambiguate

Example (cont.)
 I0 = { [S’->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.L] }

 I1 = { [S’->S.] }

 I2 = { [S->L.=R], [R->L.] }

 I3 = { [S->R.] }

 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }

 I5 = { [L->id.] }

29 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 I5 { [L id.] }

 I6 = { [S->L=.R], [R->.L], [L->.*R], L->.id] }

 I7 = { [L->*R.] }

 I8 = { [R->L.] }

 I9 = { [S->L=R.] }

LALALR (I2, [R->L.]) = { | } LALR(1) parser is conflict-free

as computation path I0...I2 does not really allow = following R.
= can only occur after R if ”*R” was encountered before.

LALR(1) Parser Construction

Method 1: (simple but not practical)

1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)

2. Look for sets of LR(1) items that have the same kernel,
and merge them.

3. Construct the ACTION table as for LR(1).
If a conflict is detected, the grammar is not LALR(1).

C GO O f

30 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

4. Construct the GOTOgraph function:
For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTOgr(I1,X), ..., GOTOgr(Ir,X) are identical because the
kernels of I1,...,Ir are identical.

Set GOTOgr(J, X) := U { I: I has the same kernel as GOTOgr(I1,X) }

Method 2: (practical, used) (details see textbook)

1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...

2. Compute lookahead sets by propagation along the GOTOgr(Ij,X) edges
(fixed point iteration).

6

Solve Conflicts by Rewriting the Grammar

 Eliminate Reduce-Reduce Conflict:

Factoring

S (A) | (B)

A char | integer | ident

B float | double | ident

S (A) | (B) | (C)

A char | integer

B float | double

C id t

[A ident .]
[B ident .]
... factor

ident

31 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Eliminate Shift-Reduce Conflict: (one token lookahead: ’(’)

Inline-Expansion

C ident

S (A) | OptY (B)

OptY Y |

Y ...
A ...
B ...

[S . (A)]
[S . OptY (B)]
[OptY .Y]
[OptY .]
[OptY .]
[Y ...] ...

expand
OptY

S (A) | (B)
| Y (B)

Y ...
A ...
B ...

LR(k) Grammar - Formal Definition

 Let G’ be the augmented grammar for G
(i.e., extended by new start symbol S’

and production rule S’ S |--)

 G is called a LR(k) grammar if

 S’ rm=>* Xw rm=> w and

 S’ rm=>* Yx rm=> y and

p.116

32 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

rm rm y

 w[1:k] = y[1:k]

imply that = and X = Y and x = y = w.

Remark: w, x, y in * in (N U)* X, Y in N

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

Some grammars are not LR(k) for any fixed k

 Example: S a B c
B b B b

| b

 describes language { a b2N+1 c : N >= 0 }

 This grammar is not LR(k) for any fixed k.

33 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Proof: As k is fixed (constant), consider for any n > k:

 S =>* a bn B bn c => a bn b bn c

 S =>* a bn+1 B bn+1 c => a bn+1 b bn+1 c

By the LR(k) definition,

 = a bn = b w = bn c

 = a bn+1 = b y = bn+1 c

Although w[1:k] = y[1:k], we have != grammar is not LR(k).

The handle cannot be
localized with only limited

lookahead size k

No ambiguous grammar is LR(k) for any fixed k

 S if E then S
| if E then S else S
| other statements

...

is ambiguous – the following statement has 2 parse trees:

if E1 then if E2 then S1 else S2

34 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1

(cont.)

 Consider situation
(configuration of shift-reduce parser)

--| ... if E then S else ... |--

 Not clear whether to

 shift else

35 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 shift else
(following production 2, i.e. if E then S is not handle), or

 reduce handle if E then S to S (following production 1)

 Any fixed-size lookahead (else and beyond) does not help!

 Suggestion: Rewrite grammar to make it unambiguous

Rewriting the grammar...

S MatchedS
| OpenS

MatchedS if E then MatchedS else MatchedS
| other statements

OpenS if E then S
| if E then MatchedS else OpenS

...

i l bi

36 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to
derive any sentential
form containing an
OpenS nonterminal
from a MatchedS

7

Some grammars are not LR(k) for any fixed k

 Grammar with productions

S a S a |

is unambiguous but not LR(k) for any fixed k. (Why?)

 An equivalent LR grammar for the same language is

37 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 An equivalent LR grammar for the same language is

S a a S |

LR(1) Items and LR(k) Items

LR(k) parser: Construction similar to LR(0) / SLR(1) parser,
but plan for distinguishing between states for k>0 tokens
lookahead already from the beginning

 States in the LR(0) GOTO graph may be split up

 LR(1) items:
[A-> a] for all productions A-> and all a in

38 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

[A > , a] for all productions A > and all a in

 Can be combined for lookahead symbols with equal behavior:
[A-> , a|b] or [A-> , L] for a subset L of

 Generalized to k>1:
[A-> , a1a2...ak]

Interpretation of [A-> , a] in a state:

 If not , ignore second component (as in LR(0))

 If =, i.e. [A->. , a], reduce only if next input symbol = a.

LR(1) Parser

 NFA start state is [S’->.S, |]

 Modify computation of Closure(I), GOTO(I,X) and the subset
computation for LR(1) items

 Details see [ASU86, p.232] or [ALSU06, p.261]

 Can have many more states than LR(0) parser

39 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 Which may help to resolve some conflicts

Interesting to know...

 For each LR(k) grammar with some constant k>1
there exists an equivalent* grammar G’ that is LR(1).

 For any LL(k) grammar there exists an equivalent LR(k)
grammar (but not vice versa!)

 e.g., language { an bn: n>0 } U { an cn: n > 0 }

40 TDDD16/TDDB44 Compiler Construction, 2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

has a LR(0) grammar
but no LL(k) grammar for any constant k.

 Some grammars are LR(0) but not LL(k) for any k

 e.g., S A b
A Aa | a (left recursion, could be rewritten)

* Two grammars are equivalent if they describe the same language.

