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TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

LR Parsing, Part 2

Constructing Parse Tables

Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2010.

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

Need to Automatically Construct
LR Parse Tables: Action and GOTO Table

Construct parse tables from the 
grammar as follows:

 First build a GOTOgraph (an NFA) 
to recognize viable prefixes

 Make it deterministic (DFA)

Th fill i A ti d G t t bl

ACTION table:

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3   *     *
5 R4 R4 * *
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 Then fill in Action and Goto tables
5 R4 R4         
6 R2 R2   *     *GOTO table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

Example Grammar G 

1. <L → L , E
2.         |  E
3. E → a
4. |  b

Classes of LR Parsers/Grammars

 LR(0) – Too weak (no lookahead)

 SLR(1) – Simple LR, 1 token lookahead

 LALR(1) – Most common, 1 token lookahead

 LR(1) – 1 token lookahead – big tables

 LR(k) – k tokens lookahead – Even bigger tables
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Differences between LR parsers:

 Table size varies widely.

 Errors not discovered as quickly by some variants.

 Different limitations in the language definitions, grammars.

An NFA Recognizing Viable Prefixes

A.k.a. the ”characteristic finite automaton” for a grammar G

 States:  LR(0) items  (= context-free items) of extended 
Grammar (definition, see next page)

 Input stream:  The grammar symbols on the stack 

 Start state:  [S’ → |.S ]        Final state:  [S’ → |S.]

 Transitions:

118a
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 Transitions:

 ”move dot across symbol” if symbol found next on stack:  
A → .B to     A → B.
A → .b to     A → b.

 -transitions to LR(0)-items for nonterminal productions 
from items where the dot precedes that nonterminal:

A → .B to     B →.

Handle,  Viable Prefix

 Consider a rightmost derivation   S *
rm Xu rm u

for a context-free grammar G.

  is called a handle of the right sentential form u, 
associated with the rule X  rm 

 Each prefix of  is called a viable prefix of G.
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Example:    Grammar G with productions   {  S -> aSb  |  c  }

 Right sentential forms:  e.g.  c,  acb,  aSb, aaaaaSbbbbb, .....

 For c:       Handle: c       Viable prefixes:  , c
 For acb: Handle: c                                  , a, ac

 For aSb:   Handle: aSb                             , a, aS, aSb

 For aaSbb: Handle: aSb                            , a, aa, aaS, aaSb

 ...

Right Derivation and Viable Prefixes

Input: a, b, a

Right derivation (handles are underlined, and blue)

<list> rm <list> , <element>

rm  <list> , a

rm <list> , <element> , a
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rm  

rm  <list> , b , a

rm  <element> , b, a

rm   a , b, a

Some Viable prefixes of the sentential form: <list> , b, a

are

{ ε;  <list> ;  <list>, ;   <list>, b ; <list>, b ,  ; <list>, b , a    }
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Definition of LR(0) Item

 An LR(0) item of a rule P is a rule with a dot ’’•’’somewhere in 
the right side.

Example:

 All LR(0) items of the production

1.  <list> → <list> , <element>

are
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are

<list> → • <list> , <element>

<list> → <list> • , <element>

<list> → <list> , • <element>

<list> → <list> , <element> •

 Intuitively an item is interpreted as how much of the rule we have found 
and how much remains.

 Items are put together in sets which become the LR analyser’s state.

Informal Construction of GOTO-Graph  
(NFA/DFA)

We want to construct a DFA 
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the 
same as a GOTO-table but 
corresponds to an ACTION + 
GOTO-table

<list> rm <list> , <element>
 <list> a

Example. Find viable prefixes in a
rightmost derivation below, 
used for informal construction
of  a goto graph
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Augmented Grammar G(<sys>)
0. <SYS> → <list>  
1. <list>    → <list> , <element>
2.               |  <element>
3. <element> → a
4.                     |  b

GOTO table. 

The graph discovers viable 
prefixes.)

rm  <list> , a
rm  <list> , <element> , a
rm  <list> , b , a
rm  <element> , b, a
rm   a , b, a

We want to construct a DFA 
which recognises all viable
prefixes of G(<SYS>):

GOTO-graph
(A GOTO-graph is not the 
same as a GOTO-table but 
corresponds to an ACTION + 
GOTO-table

0 3
start <list>

21

6

<element>

, <element>

<SYS>  <list>  <list>  <list> , <element>

Informal Construction of GOTO-Graph  
(NFA/DFA)
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Augmented Grammar G(<sys>)
0. <SYS> → <list>  
1. <list>    → <list> , <element>
2.               |  <element>
3. <element> → a
4.                     |  b

GOTO table. 

The graph discovers viable 
prefixes.)

6

4

5

a

b

a

b

<element> a

<element> b

<list>  <element>

Example righmost derivation
<list>  rm

<list> , <element>
rm  <list> , a
rm  <list> , <element> , a
rm  <list> , b , a
rm  <element> , b, a
rm   a , b, a

Constructing Sets of LR(0) Items

<SYS> → • <list> |-- Kernel (Basis)

<list> → • <list> , <element>
<list> → • <element>
<element> → • a
<element> → • b

Additional
Closure
(of kernel
items)

<SYS> → <list> • |-- Kernel (Basis)

Set I0

Set I1

Augmented Grammar
G(<sys>)

0. <SYS>→ <list>  
1. <list>  → <list , <element>
2.               |  <element>
3. <element> → a
4.                     |  b
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<list> → <list> • , <element>

(empty closure as ’’•’’ 
precedes terminals |-- and , )

Additional 
Closure

<list> → <list> , • <element> Kernel (Basis)

<element> → • a
<element> → • b

Additional 
Closure

Set I1

Set I2

Set I3,  etc.

GOTO Graph with States as 
Sets of LR(0) Items

I0 
S   • L |
L   • L , E  
L   •E  
E   • a  
E   •b

I1
S   L •

I2 
L  L , • E  
E   • a  
E   • b

I6
L E

start
L ,

E

I3
L   L • , E  

,

Based on the 
canonical collection 
of LR(0) items draw
the GOTO graph.

The GOTO graph discovers 
th fi f i ht
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I4 
E   a •

I5 
E   b •

L  E •

a

b

a

bb

those prefixes of right
sentential forms which have 
(at most) one handle
furthest to the right in the 
prefix.

Example Grammar 
1. L  → L , E
2. L  → E
3. E → a
4. E → b

Fill in Action Table from GOTO Graph

i j

a

1. If there is an item
<A> → α • a β ∈ Ii
and
GOTOgraph(Ii , a) = Ij

2. If there is a complete item
(i.e., ends in a dot ’’•’’):
<A> → α• ∈ Ii
Fill in reduce x where
x is the production number for
x: <A> → α

Filled in Action table

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3   *     *
5 R4 R4 * *
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i j

Ii Ij 

i shift j

aFill in shift j for row i and
column for symbol a.

Nonterminals

State number

3. If we have
<SYS> → <S> • |--
accept the symbol |--

4. Otherwise error.

Ii : state i (line i, itemset i) 5 R4 R4   *     * 
6 R2 R2   *     *

ACTION table:
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Table Differences LR(0), SLR(1), LALR(1)

In which column(s) should reduce x be written?

LR(0) fills in for all input.

SLR(1) fills in for all input in FOLLOW(<A>).
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LALR(1) fills in for all those that can follow a certain instance of <A>, 

see later

Filling in the GOTO Table

<A> → α • ∈ Ii

If the GOTOgraph(Ii , <A>) = Ij

fill in GOTOtable[ i, <A>] = j

i j

<A>

Ii Ij 

GOTO t bl

Example Grammar 
1. L  → L , E
2. L  → E
3. E → a
4. E → b
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i     j

<A>
Nonterminals

State number

Filled in GOTO 
table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

GOTO table:

Computing the LR(0) Item Closure
(Detailed Algorithm)
For a set I of LR(0) items compute Closure(I) (union of Kernel and Closure):

1. Closure(I)  :=   I  (start with the kernel)

2. If   [A→.B]  in Closure(I)
and   production  B → 

then  add  [B →.]  to Closure(I)     (if not already there)

3. Repeat Step 2 until no more items can be added to Closure(I).

15 TDDD16/TDDB44 Compiler Construction,   2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

Remarks:

 For s=[A → B], Closure(s) contains all NFA states reachable 
from s via -transitions, i.e., starting from which any substring derivable 
from B could be recognized.   A.k.a. -closure(s).

 Then apply the well-known subset construction 
to transform Closure-NFA -> DFA. 

 DFA states will be sets unioning closures of NFA states

Representing Sets of Items
Implementation in Parser Generator
 Any item  [A → ] can be represented by 2 integers:

 production number

 position of the dot within the RHS of that production

 The resulting sets often contain ”closure” items (where the dot 

118c
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g (
is at the beginning of the RHS).

 Can easily be reconstructed (on demand) 
from other (”kernel”) items

Kernel items:  start state [S’ → |.S],  plus all items 
where the dot is not at the left end.

 Store only kernel items explicitly, to save space

GOTOgraph Function and DFA States
Detailed algorithm
Given:  Set I of items,   grammar symbol X

 GOTOgr( I, X )  :=  U [A→.X] in I Closure ( { [A → X.] } )

 To become the state transitions in the DFA

 Now do the subset construction to obtain the DFA states:
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C := Closure( { [S’ → |.S] } )        //  C: Set of sets of NFA states

repeat

for each set of items I of C:

for each grammar symbol X

if (GOTOgr(I,X) is not empty and not in C)

add GOTOgr(I,X) to C

until no new states are added to C on a round.

Resulting DFA

 All states correspond to some viable prefix

 Final states: contain at least one item with dot to the right

 recognized some handle  reduce may (must) follow 

 Other states: handle recognition incomplete -> shift will follow

 The DFA is also called the GOTO graph 
(not the same as the LR GOTO Table!!)

120b
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(not the same as the LR GOTO Table!!).

 This automaton is deterministic as a FA (i.e., selecting 
transitions considering only input symbol consumption)
but can still be nondeterministic as a pushdown automaton
(e.g., in state I1 above: to reduce or not to reduce?)
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From DFA to parser tables:  ACTION
Detailed Algorithm, Summary
1. For each DFA transition  Ii  Ij reading a terminal  a in 

(thus, Ii contains items of kind  [X .a])

 enter   S j (shift, new state Ij)   in ACTION[ i, a ]

2. For each DFA final state Ii
(containing a complete item  [X .])

 enter   R x   

ACTION table:

state |-- ,     a    b

0 X   X   S4 S5
1 A  S2 *     *
2 X   X   S4  S5
3 R1 R1   *     *
4 R3 R3 * *
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(reduce,  x = prod. rule number for X )
in  ACTION[ i, t ] ...

 LR(0) parser:  for all t in  (all entries in row i)

 SLR(1) parser:  for all t in LASLR(i,[X .]) = FOLLOW1(X)

 LALR(1) parser:  for all t in LALALR(i,[X .])   (see later)

 Collision with an already existing S or R entry?  Conflict!!

3. For each DFA state containing  [S’ S.|--]  

 enter  A   in  ACTION[ i, |-- ]   (accept).  NB - Conflict?  (as in 2.)

4 R3 R3   *     *
5 R4 R4   *     * 
6 R2 R2   *     *

From DFA to parser tables:  GOTO Table
Summary
1. For each DFA transition   Ii  Ij reading nonterminal A

(i.e.,  Ii contains an item  [X  .A])

 enter   GOTO[ i , A ]  =  j
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GOTO table:

state L     E

0             1     6
1             *      *
2             *      3
3             *      *
4             *      *
5             *      *
6             *      *

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

Conflicts and Categories
of LR Grammars and Parsers

Peter Fritzson, Christoph Kessler, 
IDA, Linköpings universitet, 2010.

Conflict Examples in LR Grammars

 Shift – Reduce conflict:

 E  id + E         (shift +)
|   id               (reduce id)

 Reduce – Reduce conflict:

22 TDDD16/TDDB44 Compiler Construction,   2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 E  id               (reduce id)
Pcall  id          (reduce id)

 (Shift – Accept conflict)

 S’  L               (accept)
L  L , E           (shift ,)

Conflicts in LR Grammars

Observe conflicts in DFA (GOTO graph) kernels 
or at the latest when filling the ACTION table.

 Shift-Reduce conflict

 A DFA accepting state has an outgoing transition,
i.e. contains items [X.] and [Y.Z]  for some Z in NU

 Reduce Reduce conflict
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 Reduce-Reduce conflict

 A DFA accepting state can reduce for multiple nonterminals,
i.e. contains at least 2 items [X.] and [Y.],  X != Y

 (Shift/Reduce-Accept conflict)

 A DFA accepting state containing [S’S.|--] contains 
another item [XS.]  or  [XS.b]

Only for LR(0) grammars there are no conflicts.

Handling Conflicts in LR Grammars

(Overview):

 Use lookahead  

 if lucky, the LR(0) states + a few fixed lookahead sets are 
sufficient to eliminate all conflicts in the LR(0)-DFA 

SLR(1), LALR(1)

 otherwise use LR(1) items [X  a] (a is look ahead)
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 otherwise, use LR(1) items  [X., a]   (a is look-ahead)   
to build new, larger NFA/DFA

expensive  (many items/states  very large tables)

 if still conflicts, may try again with k>1  even larger tables

 Rewrite the grammar (factoring / expansion) and retry...

 If nothing helps, re-design your language syntax 

 Some grammars are not LR(k) for any constant k
and cannot be made LR(k) by rewriting either
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Look-Ahead (LA) Sets

 For a LR(0) item  [X → ] in DFA-state Ii, define

lookahead set LA( Ii, [X → ] )    (a subset of )

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items:

 For SLR(1):

LASLR( Ii, [X → .] ) = { a in : S’ =>* Xa } = FOLLOW1( X )
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LASLR( Ii, [X .] )  { a in :  S  Xa }  FOLLOW1( X )

for all Ii with [X → .] in Ii
 depends on nonterminal X only, not on state Ii

 For LALR(1):

LALALR( Ii, [X → .] ) = { a in :  S’ =>* Xaw  and the
LR(0)-DFA started in I0 reaches Ii after reading  } 

 usually a subset of FOLLOW1( X ), i.e. of SLR LA set

 depends on state Ii

Made it simple:
Is my grammar SLR(1) ?

 Construct the (LR(0)-item) characteristic NFA 
and its equivalent DFA (= GOTO graph) as above.

 Consider all conflicts in the DFA states:

 Shift-Reduce:

C id ll i f fli ti it [X ] [Y b ]

[X  .]
[Y  .b]
...

...
b
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Consider all pairs of conflicting items  [X.],  [Y.b]:
If  b in FOLLOW1(X) for any of these    not SLR(1).

 Reduce-Reduce:

Consider all pairs of conflicting items  [X.], [Y.]:
If  FOLLOW1(X) intersects with FOLLOW1(Y)   not SLR(1).

 (Shift-Accept:  similar to Shift-Reduce)

[X  .]
[Y  .]
...

Example:  L-Values in C Language

 L-values on left hand side of assignment. 
Part of a C grammar:

1. S’ → S

2. S → L = R

3. |   R

4 L → *R
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4. L → R

5. |   id

6. R → L 

 Avoids that R  (for R-values) appears as LHS of assignments

 But *R = ... is ok. 

 This grammar is LALR(1) but not SLR(1):

Example  (cont.)
LR(0) parser has a shift-reduce conflict in kernel of state I2:

 I0 =  { [S’.S],  [S.L=R],  [S.R],  [L.*R],  [L.id], R.L] }

 I1 =  { [S’->S.] }

 I2 =  { [S->L.=R],  [R->L.] }

 I3 =  { [S->R.] }

 I4 = { [L->*.R], [R->.L], [L->.*R], [L->.id] }

Shift = or reduce to R?
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 I4   { [L .R],  [R .L], [L . R],  [L .id] }

 I5 =  { [L->id.] }

 I6 =  { [S->L=.R],  [R->.L],  [L->.*R],  L->.id] }

 I7 =  { [L->*R.] }

 I8 =  { [R->L.] }

 I9 =  { [S->L=R.] }

FOLLOW1(R) = { | , = }    SLR(1) still shift-reduce conflict in I2
as = does not disambiguate

Example (cont.)
 I0 =  {  [S’->.S],  [S->.L=R],  [S->.R],  [L->.*R],  [L->.id], R->.L] }

 I1 =  { [S’->S.] }

 I2 =  { [S->L.=R],  [R->L.] }

 I3 =  { [S->R.] }

 I4 =  { [L->*.R],  [R->.L], [L->.*R],  [L->.id] }

 I5 = { [L->id.] }
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 I5   { [L id.] }

 I6 =  { [S->L=.R],  [R->.L],  [L->.*R],  L->.id] }

 I7 =  { [L->*R.] }

 I8 =  { [R->L.] }

 I9 =  { [S->L=R.] }

LALALR ( I2, [R->L.] ) = { | }     LALR(1) parser is conflict-free

as computation path I0...I2 does not really allow = following R.  
= can only occur after R if ”*R” was encountered before.

LALR(1) Parser Construction

Method 1: (simple but not practical)

1. Construct the LR(1) items  (see later).  (If there is already a conflict, stop.)

2. Look for sets of LR(1) items that have the same kernel,
and merge them.

3. Construct the ACTION table as for LR(1).
If a conflict is detected, the grammar is not LALR(1).

C GO O f
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4. Construct the GOTOgraph function:
For each merged J = I1 U I2 U ... U Ir,
the kernels of GOTOgr(I1,X), ..., GOTOgr(Ir,X) are identical because the 
kernels of I1,...,Ir are identical.

Set GOTOgr( J, X ) := U { I:  I has the same kernel as GOTOgr(I1,X) }

Method 2: (practical, used)    (details see textbook)

1. Start from LR(0) items and construct kernels of DFA states I0, I1, ...

2. Compute lookahead sets by propagation along the GOTOgr(Ij,X) edges 
(fixed point iteration).
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Solve Conflicts by Rewriting the Grammar

 Eliminate Reduce-Reduce Conflict:

Factoring

S  ( A )  |  ( B ) 

A  char | integer | ident

B  float | double | ident

S  ( A )  |  ( B )  |  ( C )

A  char | integer

B  float | double

C id t

[A  ident . ]
[B  ident . ]
... factor

ident
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 Eliminate Shift-Reduce Conflict:     (one token lookahead: ’(’ )

Inline-Expansion   

C  ident

S  ( A )  |  OptY ( B ) 

OptY  Y | 

Y  ...
A  ...    
B  ...

[S  . ( A ) ]
[S  . OptY ( B) ]
[OptY  .Y ]
[OptY  . ]
[OptY   . ]
[Y  ... ]  ...

expand
OptY

S  ( A )  |  ( B ) 
|  Y ( B )

Y  ...
A  ...    
B  ...

LR(k) Grammar   - Formal Definition

 Let G’ be the augmented grammar for G
(i.e., extended by new start symbol  S’ 

and production rule  S’  S |-- )

 G is called  a  LR(k) grammar if

 S’  rm=>*  Xw  rm=>  w        and

 S’  rm=>*   Yx   rm=>  y         and

p.116
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rm  rm y

 w[1:k] = y[1:k]

imply  that    =  and  X = Y and   x = y = w.

Remark:    w, x, y in *         in (N U )*        X, Y in N

i.e., considering at most k symbols after the handle,
in each rightmost derivation the handle can be localized

and the production to be applied can be determined.

Some grammars are not LR(k) for any fixed k

 Example:         S   a B c
B   b B b

|   b

 describes language  { a b2N+1 c :  N >= 0 }

 This grammar is not LR(k) for any fixed k.
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Proof: As k is fixed (constant), consider for any n > k:

 S  =>*   a bn B bn c  =>  a bn b bn c   

 S  =>*   a bn+1 B bn+1 c  =>  a bn+1 b bn+1 c

By the LR(k) definition,

  = a bn  = b      w = bn c

  = a bn+1  = b      y = bn+1 c

Although  w[1:k] = y[1:k],  we have   !=   grammar is not LR(k).

The handle cannot be 
localized with only limited 

lookahead size k

No ambiguous grammar is LR(k) for any fixed k

 S   if E    then S
|    if E    then S   else S
|    other statements

...

is ambiguous – the following statement has 2 parse trees:

if E1   then if E2   then S1   else   S2
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S

if E then S

elsethenif E SS

S1 S2E2

E1

S

if E then S else

thenif E

S

S

S1

S2

E2

E1

(cont.)

 Consider situation  
(configuration of shift-reduce parser)

--|  ...  if E   then S else ... |--

 Not clear whether to

 shift else

35 TDDD16/TDDB44 Compiler Construction,   2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

 shift  else    
(following production 2,  i.e.   if E then S is not handle),  or

 reduce handle if E then S to  S   (following production 1)

 Any fixed-size lookahead (else and beyond) does not help!

 Suggestion:  Rewrite grammar to make it unambiguous

Rewriting the grammar...

S   MatchedS
|    OpenS

MatchedS  if E    then MatchedS   else MatchedS
|   other statements

OpenS   if E    then S
|    if E    then MatchedS   else OpenS

...

i l bi
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is no longer ambiguous

OpenS

if E then
S

elsethenif E Mat-SMat-S

S1 S2E2

E1

S

MatchedS

Impossible now to 
derive any sentential 
form containing an 
OpenS nonterminal 
from a MatchedS
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Some grammars are not LR(k) for any fixed k

 Grammar  with productions

S  a S a    |    

is unambiguous but not LR(k) for any fixed k. (Why?)

 An equivalent LR grammar for the same language is
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 An equivalent LR grammar for the same language is

S  a a S   |    

LR(1) Items  and LR(k) Items

LR(k) parser:  Construction similar to LR(0) / SLR(1) parser, 
but plan for distinguishing between states for k>0 tokens 
lookahead already from the beginning  

 States in the LR(0) GOTO graph may be split up

 LR(1) items:
[ A->  a ] for all productions A-> and all a in 
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[ A > , a ] for all productions A > and  all a in 

 Can be combined for lookahead symbols with equal behavior:
[ A-> , a|b ] or [ A-> , L ]    for a subset L of 

 Generalized to k>1:
[ A-> , a1a2...ak ]

Interpretation of [ A-> , a ] in a state:

 If  not , ignore second component (as in LR(0))

 If =, i.e. [ A->. , a ],  reduce only if next input symbol = a.

LR(1) Parser

 NFA start state is  [ S’->.S, | ]

 Modify computation of Closure(I), GOTO(I,X) and the subset 
computation for LR(1) items 

 Details see [ASU86, p.232] or [ALSU06, p.261]

 Can have many more states than LR(0) parser
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 Which may help to resolve some conflicts

Interesting to know...

 For each LR(k) grammar with some constant k>1
there exists an equivalent* grammar G’ that is LR(1).

 For any LL(k) grammar there exists an equivalent LR(k) 
grammar  (but not vice versa!)

 e.g., language  { an bn: n>0 } U { an cn: n > 0 } 

40 TDDD16/TDDB44 Compiler Construction,   2010P. Fritzson, C. Kessler, IDA, Linköpings universitet.

has a LR(0) grammar 
but no LL(k) grammar for any constant k.

 Some grammars are LR(0) but not LL(k) for any k

 e.g., S  A b   
A  Aa  |  a       (left recursion, could be rewritten) 

* Two grammars are equivalent if they describe the same language.


