TDDD16 Compilers and interpreters
TDDB44 Compiler Construction

Formal Languages Part 1 Including Regular Expressions

Peter Fritzson IDA, Linköpings universitet, 2010.

Basic Concepts for Symbols, Strings, and Languages

Alphabet

A finite set of symbols.

■ Example:

 $\begin{array}{ll} \sum_b = \{\ 0,1\ \} & \text{binary alphabet} \\ \sum_s = \{\ A,B,C,...,Z,\mathring{A},\ddot{A},\ddot{O}\ \} & \text{Swedish characters} \\ \sum_r = \{\ WHILE,IF,BEGIN,...\ \} & \text{reserved words} \end{array}$

String

A finite sequence of symbols from an alphabet.

Example:

 $\begin{array}{lll} \text{10011} & & \text{from } \sum_b \\ \text{KALLE} & & \text{from } \sum_s \\ \text{WHILE DO BEGIN} & & \text{from } \sum_r \end{array}$

DDD16/R44, P Fritzson, IDA, LIU, 2010.

Properties of Strings in Formal Languages String Length, Empty String

- Length of a string
 - Number of symbols in the string.
- Example:
 - x arbitrary string, |x| length of the string x
 - |10011| = 5 according to Σ_b
 - |WHILE| = 5 according to Σ_s
 - |WHILE| = 1 according to \sum_{r}
- Empty string
 - The empty string is denoted ϵ , $|\epsilon| = 0$

DDD16/B44, P Fritzson, IDA, LIU, 2010.

Properties of Strings in Formal Languages Concatenation, Exponentiation

- Concatenation
 - Two strings x and y are joined together x•y = xy
- Example
 - x = AB, y = CDE produce x•y = ABCDE
 - |xy| = |x| + |y|
 - xy ≠ yx (not commutative)
 - ∈ x = x ∈ = x
- String exponentiation
 - $x^0 = \epsilon$
 - $x^1 = x$
 - $x^2 = xx$
 - $x^n = x \cdot x^{n-1}, n >= 1$

44, P Fritzson, IDA, LIU, 2010.

Substrings: Prefix, Suffix

- Example:
 - x = abc
- Prefix: Substring at the beginning.
 - \bullet Prefix of x: abc (improper as the prefix equals x), ab, a, ε
- Suffix: Substring at the end.
 - Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

DDD16/B44, P Fritzson, IDA, LIU, 2010.

Languages

- A Language = A finite or infinite set of strings which can be constructed from a special alphabet.
- Alternatively: a subset of all the strings which can be constructed from an alphabet.
 - \emptyset = the empty language. NB! $\{\varepsilon\} \neq \emptyset$.
- Example: S = {0,1}
 - L1 = {00,01,10,11} all strings of length 2
 - L2 = $\{1,01,11,001,...,111, ...\}$ all strings which finish on 1
 - L3 = Ø
 all strings of length 1 which finish on 01

DD16/R44, P Fritzson, IDA, LIU, 2010.

Closure

- lacksquare Σ^* denotes the set of all strings which can be constructed from the alphabet
- Closure types:
 - * = closure, Kleene closure
 - + = positive closure
- Example: S = {0,1}
 - $\Sigma^* = \{\epsilon, 0, 1, 00, 01, ..., 111, 101, ...\}$
 - $\Sigma^+ = \Sigma^* \{\epsilon\} = \{0,1,00,01,...\}$

Operations on Languages Concatenation

- L, M are languages.
- Concatenation operation (or nothing) between languages
 - L•M = LM = $\{xy|x \in L \text{ and } y \in M\}$
 - $L\{\epsilon\} = \{\epsilon\}L = L$
 - L∅ = ∅L = ∅
- Example:
 - L ={ab,cd} M={uv,yz}
 - gives us: LM ={abuv,abyz,cduv,cdyz}

Exponents and Union of Languages

- Exponents of languages
 - L⁰ = {€}
 - L¹ = L
 - L² = L•L
 - $L^n = L \cdot L^{n-1}$, n >= 1
- Union of languages
 - L, M are languages.
 - $L \cup M = \{x | x \in L \text{ or } x \in M\}$
 - Example: $L = \{ab,cd\}$, $M = \{uv,yz\}$
 - gives us: $L \cup M = \{ab,cd,uv,yz\}$

Closure of Languages

- Closure
 - L* = L $^0 \cup$ L $^1 \cup ... \cup$ L $^{\infty}$
- Positive closure

 - L* = $\{\epsilon\} \cup L^+$
- Example: A = {a,b}
 - $A^* = \{\epsilon, a, b, aa, ab, ba, bb, ...\}$
 - = All possible sequences of a and b.
- A language over A is always a subset of A*.

Small Language Exercise

Regular expressions

- Regular expressions are used to describe simple languages, e.g. basic symbols, tokens.
 - Example: identifier = letter (letter | digit)*
- Regular expressions over an alphabet S denote a language (regular set).

Rules for constructing regular expressions

- S is an alphabet,
 - the regular expression r describes the language L.
 - the regular expression s corresponds to the language L_s, etc.
- Each symbol in the alphabet S is a regular expression which denotes {a}.
 - = repetition, zero or more times
 - + = repetition, one or more times
 - . concatenation can be left out

Regular expression r	Language L _r
€	{€}
a a∈S	{ a }
union: (s) (t)	$L_s \cup L_t$
concatenation: (s).(t)	$L_s.L_t$
repetition: (s)*	L _s *
repetition: (s)+	L _s ⁺

Priorities

Highest	* +			
	•			
Lowest	1			

Regular Expression Language Examples

- Examples: S = {a,b}
 - 1. r=a $L_r = \{a\}$
 - 2. r=a* $L_r = {\epsilon, a, aa, aaa, ...} = {a}^*$
 - $L_r = \{a,b\} = \{a\} \cup \{b\}$ • 3. r=a|b
 - 4. r=(a|b)* $L_r=\{a,b\}^*=\{\epsilon,a,b,aa,ab,ba,bb,aaa,aab,...\}$
 - 5. r=(a*b*)* $L_r=\{a,b\}^*=\{\epsilon,a,b,aa,ab,ba,bb,aaa,aab,...\}$
 - 6. r=a|ba* $L_r=\{a,b,ba,baa,baaa,...\}=\{a \text{ or } ba^i \mid i\geq 0\}$
- NB! {aⁿbⁿ | n>=0} cannot be described with regular expressions.
 - r=a*b* gives us Lr={aⁱ b^j | i,j>=0} does not work.
 - r=(ab)* gives us Lr={(ab)ⁱ | i>=0}={ε,ab,abab, ...} does not work.
- Regular expressions cannot "count" (have no memory).

Finite state Automata and Diagrams

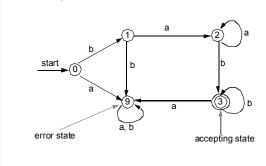
- (Finite automaton)
- Assume:
 - regular expression RU = ba+b+ = baa ... abb ... b
 - L(RU) = { $ba^nb^m | n, m \ge 1$ }

■ Recognizer

- A program which takes a string x and answers yes/no depending on whether x is included in the language.
- The first step in constructing a recognizer for the language L(RU) is to draw a state diagram (transition diagram).

State Transition Diagram

state diagram (DFA) for banbm



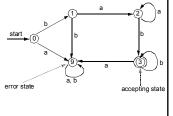
Interpret a State Transition Diagram

- Start in the starting node 0.
- Repeat until there is no more input:
 - Read input.
 - Follow a suitable edge.
- When there is no more input:
 - Check whether we are in a final state. In this case accept the string.
- There is an error in the input if there is no suitable edge to follow.
 - Add one or several error nodes.

Input and State Transitions

- Example of input: baab
- Then accept when there is no more input and state 3 is an accepting state.

Step	Current State	Input
1	0	baab
2	1	aab
3	2	ab
4	2	b
5	3	ε



Representation of State Diagrams by Transition Tables

- The previous graph is a DFA (Deterministic Finite Automaton).
- It is deterministic because at each step there is exactly one state to go to and there is no transition marked "ε".
- A regular expression denotes a regular set and corresponds to an NFA (Nondeterministic Finite Automaton).

State	Accept	Found	Next state	Next state
			а	b
0	no	ε	9	1
1	no	b	2	9
2	no	ba ⁺	2	3
3	yes	ba+b+	9	3
9	no			9

Transition Table (Suitable for computer representation).

D16/B44, P Fritzson, IDA, LIU, 2010.

