
1

Peter Fritzson
IDA, Linköpings universitet, 2009.

TDDD16 Compilers and Interpreters

TDDB44 Compiler Construction

Memory Management
and

Run-Time Systems

2 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Run-Time Systems Support Program Execution

Memory management of a program during execution.
This includes allocation and de-allocation of memory cells.
Address calculation for variable references.
For references to non-local data, finding the right object taking
scope into consideration.
Recursion, which means that several instances of the same
procedure are active (activations of a procedure) at the same
time during execution.
Dynamic language constructs, such as dynamic arrays,
pointer structures, etc.
Different sorts of parameter transfer

Two different memory management strategies: static and dynamic
memory management, determined by the language to be executed.

3 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Static Memory Management
All data and its size must be known
during compilation, i.e. the memory
space needed during execution is
known at compile-time.
The underlying language has no
recursion.
Data is referenced to by absolute
addresses.

Static memory management needs no
run-time support, because everything
about memory management can be
decided during compilation.
An example of such a language is
FORTRAN77, whereas FORTRAN90
has recursion.

Fixed

Data
Area

Program

4 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Memory Management (1)

Data size is not known at compiler time (e.g. dynamic arrays,
pointer structures)
There is recursion

Examples of such languages are: Pascal, C, Algol, Java,

5 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Memory Management (2)
Run-Time Support

Run-Time support is needed for
languages with dynamic memory management:

The call chain must be stored somewhere and references to
non-local variables must be dealt with.
Variables can not be referenced by absolute addresses, but
by <blockno, offset>.
All data belonging to a block (procedure) is gathered together
in an activation record (stack frame).
At a procedure call memory is allocated on the stack and
each call involves constructing an activation record.

6 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

A Stack Frame with Frame and Stack Pointers

Previous
stack
frame

Decreasing
memory
addresses

Offset of variable A
from fp

Current
stack
frame

Variable A

fp (old sp)

sp

fp – frame pointer
sp – stack pointer

Stack
grows
downwards

2

7 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Some Concepts (Rep.)
Activation

Each call (execution) of a procedure is known as activation of the
procedure.

Life span of an activation
The life span of an activation of a procedure p lasts from the
execution’s first statement to the last statement in p’s procedure body.

Recursive procedure
A procedure is recursive if it can be activated again during the life span
of the previous activation.

Activation tree
An activation tree shows how procedures are activated and terminated
during an execution of a program.
Note that a program can have different activation trees in different
executions.

Call chain
All current activations (ordered by activation time)
- a path in the activation tree
- a sequence of procedure frames on the run-time stack

8 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Example of Activation Tree (Rep.)

program p;
procedure q;

...
end (* q *);

procedure r;
...
q;

end (* r *);

begin (* p *)
read(x);
if x = 0
then q;
else r;

end (* p *);

Two different activation trees for the program:

Activation tree when x=0

Activation tree when x≠0

p

qread

rread

p

q

9 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Formal and Actual Parameters (Rep.)

Arguments declared in the head of a procedure declaration
are its formal parameters and arguments in the procedure
call are its actual parameters.

In the example below:
i: is a formal parameter
k: is an actual parameter

procedure A(i: integer);
begin (* A *)
...
A(k);
...

end (* A *);

10 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Activation Record

Local data
Temporary data
Return address
Parameters
Pointers to previous activation records (dynamic link,
control link)
Static link (access link) or display for finding the correct
references to non-local data (e.g. in enclosing scopes)
Dynamically allocated data (dope vectors)
Space for a return value (where needed)
Space for saving the contents of registers

All information which is needed for an activation of a procedure
is put in a record which is called an activation record.
The activation record remains on the stack during the life span of the
procedure. An activation record contains:

procedure p1
var A: ...
procecure p2

... reference A
end (* p2 *)

end (* p1 *)

11 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Typical Memory Organization
(Pascal/Java-like language)

Static data
The memory requirement for
data objects must be known
at compile time and the
address to these objects is
not changed during
execution, so the addresses
can be hard-coded in the
object code.

Stack
Space for activation records
is allocated for each new
activation of procedures.

Heap
Allocation when necessary.

Object code

Static data

Stack

Free
Space

Heap

Stack grows
downwards

Heap grows
upwards

Global
data

Activation
records

Dynamic
data

Memory
fragmentation

12 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

How are non-local variables referenced?
Static link (access link)
Display
program prog; (* Block B0,predefined vars)
var a,b,c: integer; (* Block B1, Globals*)
procedure p1;
var b, c: real; (* Block B2 *)
procedure p2;
var c: real; (* Block B3 *)
begin
c := b+a; (* B3.c := B2.b + B1.a *)

end (* p2 *);
begin
p2;

end (* p1);
begin
p1;

end (* prog *).

Example:

In the procedures the variables are referenced using
<blockno, offset>:
B3.c := B2.b + B1.a

or by using relative blocknumber:
0.c := 1.b + 2.a

(0: current block, 1: nearest surrounding block, etc.)

3

13 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Non-local references through Static Link

The static link is a pointer to
the most recent activation
record for the textually
surrounding block

Example. Use relative block
number for statement inside
procedure p2:
0.c := 1.b + 2.a
For variable a follow the
static link 2 steps.
This method is practical and
uses little space. With deeply
nested procedures it will be
slow.

p2

p1

main

Static Link

14 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Non-local references through Display

Display is a table with
pointers (addresses) to
surrounding procedures’
activation records.
The display can be
stored in the activation
records.
Display is faster than
static link for deep
nesting, but requires
more space.
Display can be slightly
slower than static link for
very shallow nesting.

p2

p1

main

Display

Display

15 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Link, i.e., Control Link
Dynamic link specifies the call chain,
Not the same as static link if there is a recursive call chain,e.g

program foo;
procedure p1;
procedure p2
procedure p3;
begin (* p3*)

p1;
...

end (* p3 *);
begin (* p2 *)

p3;
...

end (* p2 *)
begin (* p1 *)
p2;
...;

end (* p1)
begin (* main *)
p1;

end (* main *)

p1

p3

p2

p1

main

old fp

old fp

old fp

old fp

Dynamic link
- Call chain

Static link

Textual
environment

The stack at 2nd call for p1

(On return from p1
we continue inside p3)

16 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Heap Allocation (Rep.)
In some languages data can dynamically be built during execution and its
size is not known (e.g. strings of variable length, lists, tree structures, etc).

Manual memory management

De-allocation is not performed automatically as in stack allocation. Hard
work, can lead to bugs.
Pascal: new(p) (*allocation*) dispose(p) (* deallocation*)
C: p=malloc() (*allocation*) free(p) (* deallocation*)

Automatic memory management, with garbage collection (e.g. Lisp, Java)

De-allocation is automatic. Resource-consuming, but avoids bugs.

released
memory

memory
fragmentation

used

free

After memory compaction:
Free list

17 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Data Storage and Referencing
Where is data stored and how is it referenced?

(Semi-static) Static data can be allocated directly
(consecutive in the activation record, data area).
Data is referenced by <blockno, offset>.
blockno is specified as nesting depth.

Simple variables (boolean, integer, real ...)
These have a fixed size and are put directly into the
activation record, or in registers.

Static arrays
Fixed number of elements, i.e. size is known at compile
time.
Example: A: array[1..100] of integer;

Stored directly in the activation record.
18 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Arrays

The size is unknown at compile time:
Example: B: array[1..max] of integer;
max not known at compile time.

Dope vector (data descriptor) is used for dynamic arrays.
Dope vectors are stored in the activation record.

Dope vector:

Either above
the stack + offset
or in the heap

Upper limitLower limit

Start address

4

19 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Arrays and
Block Structures in ALGOL (1)

parameters

A STACKTOP

DISPLAY

before L1

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

before L2

PROCEDURE A(X,Y); INTEGER X, Y;

L1: BEGIN REAL Z;

ARRAY B[X:Y];

L2: BEGIN REAL D,E;

L3: •••

END;

L4: BEGIN ARRAY A[1:X];

L5: BEGIN REAL E;

L6: •••

END;

L7: END;

L8: END;

(block B1:)

20 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Arrays and
Block Structures in
ALGOL (2)

PROCEDURE A(X,Y); INTEGER X, Y;

L1: BEGIN REAL Z;

ARRAY B[X:Y];

L2:BEGIN REAL D,E;

L3: •••

END;

L4:BEGIN ARRAY A[1:X];

L5:BEGIN REAL E;

L6: •••

END;

L7: END;

L8: END;

(block

 array B

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L2,L4,L8

 array B

D, E

b2 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L3

21 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Dynamic Arrays and
Block Structures in
ALGOL (3)

PROCEDURE A(X,Y); INTEGER X, Y;

L1: BEGIN REAL Z;

ARRAY B[X:Y];

L2:BEGIN REAL D,E;

L3: •••

END;

L4:BEGIN ARRAY A[1:X];

L5:BEGIN REAL E;

L6: •••

END;

L7: END;

L8: END;

(blo

 array A

 array B

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L5, L7

 array A

 array B

E

b4 STACKTOP

A dope v.

b3 STACKTOP

Z,B dope v.

b1 STACKTOP

parameters

A STACKTOP

DISPLAY

L6

22 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Parameter Passing (1) (Rep.)
Call by Reference

There are different ways of passing parameters in
different programming languages. Here are four of the
most common methods:

1. Call by reference (Call by location)
The address to the actual parameter, l-value, is passed
to the called routine’s AR
The actual parameter’s value can be changed.
Causes aliasing.
The actual parameter must have an l-value.

Example: Pascal’s VAR parameters, reference
parameters in C++. In Fortran, this is the only kind of
parameter.

23 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Parameter Passing (2) (Rep.)
Call by Value

2. Call by value
The value of the actual parameter is passed
The actual parameter cannot change value

Example: Pascal’s non-VAR parameters,
found in most languages (e.g. C, C++, Java)

24 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Parameter Passing (3) (Rep.)
Call by value-result (hybrid)

3. Call by value-result (hybrid)
The value of the actual parameter is calculated by
the calling procedure and is copied to AR for the
called procedure.
The actual parameter’s value is not affected during
execution of the called procedure.
At return the value of the formal parameter is copied
to the actual parameter, if the actual parameter
has an l-value (e.g. is a variable).

Found in Ada.

5

25 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Parameter Passing (4) (Rep.)
Call by Name

4. Call by name
Similar to macro definitions
No values calculated or passed
The whole expression of the parameter is passed as a
procedure without parameters, a thunk.
Calculating the expression is performed by evaluating the
thunk each time there is a reference to the parameter.
Some unpleasant effects, but also general/powerful.

Found in Algol, Mathematica, Lazy functional languages

26 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Example of Using the Four Parameter
Passing Methods: (Rep.)

procedure swap(x, y : integer);
var temp : integer;
begin
temp := x;
x := y;
y := temp;

end (*swap*);

...
i := 1;
a[i]:=10; (* a: array[1..5]

of integer *)
print(i,a[i]);
swap(i,a[i]);
print(i,a[1]);

Error!10 11 1010 1

1 101 101 101 10

Call by
name

Call by
value-result

Call by
value

Call by
reference

Results from the 4 parameter passing methods
Printouts from the print statements in the above example

27 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Reason for the Error in the
Call-by-name Example

The following happens:

x = text(’i’);
y = text(’a[i]’);

temp := i; (* => temp:=1 *)
i := a[i]; (* => i:=10 since a[i]=10 *)
a[i] := temp; (* => a[10]:=1 => index out of bounds *)

Note: This error does not occur in lazy functional languages
using call-by-name since side-effects are not allowed.

28 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Static Memory Management
E.g. Fortran77 and (partly) CUDA/C on NVIDIA

No procedure nesting, i.e., no block structure.
⇒ References to variables locally or globally.
⇒ No displays or static links needed.

No recursion (⇒ stack not needed).
All data are static (⇒ heap not needed).

All memory is allocated statically
⇒ variables are referenced by absolute address.
The data area (i.e. the activation record) is often placed with
the code.
Inefficient for allocating space for objects which are perhaps
used only a short time during execution.
But execution is efficient in that all addresses are placed and
ready in the object code

29 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Static Memory Allocation and
Procedure Call/Return for Fortran77

At procedure call
1. Put the addresses (or values) of the

actual parameters in the data area.
2. Save register contents.
3. Put return address in the data area.
4. Execute the routine.

SUBROUTINE SUB(J)
I = 1
J = I+3*J
END

...
Code for SUB
...

Temp

J

I

Return address

On return:
1. Re-set the registers.
2. Jump back.

30 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Memory management in
Algol, Pascal, C, C++, Java

Language Properties:
Nested procedures/blocks (PASCAL, ALGOL)
Dynamic arrays (ALGOL, C++, Java, ...)
Recursion
Heap allocation (PASCAL, C, C++, Java, ...)

Problems:
References to non-local variables
(solved by display or static link)
Call-by-name (ALGOL, Lazy Functional Languages)
Dynamic arrays (dope vector)
Procedures as parameters

6

31 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Events when Procedure P Calls Q
At call:

P already has an AR (activation
record) on the stack
P's responsibility:

Allocate space for Q's AR.
Evaluate actual parameters
and put them in Q's AR.
Save return address and
dynamic links (i.e. top_sp) in
new (Q's) AR.
Update (increment) top_sp.

Q's responsibility:
Save register contents and
other status info.
Initialise own local data and
start to execute.

At return:
Q's responsibility

Save return value in own AR
(NB! P can access the return
value after the jump).
Reset the dynamic link and
register contents, ...
Q finishes with return to P's
code.

P's Responsibility
P collects the return value
from Q, despite update of top-
sp.

32 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

At Calls
Stack and Heap

dynamic objects/arrays (if nec)
temporary variables

local variables
saved regs (if necessary)

static link
return address

dynamic link (old fp)
actual parameters

return value

Stack

Heap

grows
downwards

grows
upwards stack grows

downwards

AR for caller

AR for callee,
i.e. called proc

dynamic objects/arrays (if nec)
temporary variables

local variables
saved regs (if necessary)

static link
return address

dynamic link (old fp)
actual parameters

return value
callers
responsibility

callee's
responsibility

old fp

new fp =
old top_sp

old top_sp

new top_sp

33 TDDD16/TDDB44 Compiler Construction, 2009P. Fritzson, IDA, Linköpings universitet.

Procedure Call/Return in
Algol, Pascal, C, ...

At call:
1. Space for activation record

is allocated on the stack.
2. Display / static link is set.
3. Move the actual

parameters.
4. Save implicit parameters

(e.g. registers).
5. Save return address.
6. Set dynamic link.
7. Execute the routine.

At return:
1. Reset dynamic link.
2. Reset the registers
3. Reset display / static link
4. Jump back.

