TDDD16 Compilers and interpreters
TDDB44 Compiler Construction

A
L

Symbol Tables

Peter Fritzson, Christoph Kessler,
IDA, Link&pings universitet, 2009

Symbol Tables in the Compiler {&;

source program
sequence of chars:
'IF sum=5 THEN.."

Lexical
~
sequence of tokens:
'IF sum’ =5
Syntactic
/ analysis T \
parse tree, denvauon\\vee o
Semantic
analysis and
Intermediate

code gen

$ internal form,
intermediate code

P

internal form
Code /
generation

object program

. R _ R
Symbol Table Functionality {&; Requirements and Concepts {&;

® Function: Gather information about names which are in a program.

m A symbol table is a data structure, where information about program
objects is gathered.

e Is used in both the analysis and synthesis phases.

e The symbol table is built up during the lexical and syntactic analysis.
m Provides help for other phases during compilation:

e Semantic analysis: type conflict?

e Code generation: how much and what type of
run-time space is to be allocated?

e Error handling: Has the error message "Variable A undefined"
already been issued?

m The symbol table phase or symbol table management refer to the symbol
table’s storage structure, its construction in the analysis phase and its use
during the whole compilation.

m Requirements for symbol table management
e quick insertion of an identifier
e quick search for an identifier
o efficient insertion of information (attributes) about an id
e quick access to information about a certain id
e Space- and time- efficiency

® Important concepts

Identifiers, names

L-values and r-values
Environments and bindings
Operators and various notations
Lexical- and dynamic- scope
Block structures

. TR R
Identifiers and Names ,% v L-value and R-value ,% v
m |dentifiers — Names B A name can be denoted by m There is a difference between m Certain expressions have either |-

several identifiers, so-called

o Anidentifier is a string, e.g. 2
ABC. aliasing.

e A name denotes a space in

memory, i.e., it has a value * = Example:
ARSbd i address: c1 f N _
and various attributes, e.g. {x,c1), (y,C1),...} \ Expression | has | hasr
type, scope. value value
/ .= i+l no yes
bs
m Example: [i]:=[3 + 13 b-> yes yes
procedure A; a yes yes
var x. & oe.e-i L-value R-value
al[i] yes yes
rocedure B) same identifier x but 2 o os
P ! different names Y
var x :
‘\/
TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4 TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 106

what is meant by the right and the
left side of an assignment.

or r-value, while some have both
l-value and r-value.




Binding: <names, attributes>

® Names

e Come from the lexical analysis and some additional
analysis.

| attributes

e Come from the syntactic analysis, semantic analysis and
code generation phase.

m Binding is associating an attribute with a name, e.g.

procedure foo;
var k: char; {Bind k to char }

procedure fie;

var k: integer; {Bindktointeger}

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2000 py

:"f" Y
Static and Dynamic Language Concepts k*‘

Static Concepts Dynamic Counterparts

Definition of a subprogram | Call by a subprogram

Declaration of a name Binding of a name

Scope of a declaration Lifetime of binding

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 py

IR
Environments and Bindings 5*-‘

= Different environments are created ® Example
during execution, e.g. when calling a o Env={(x,Cl),y.C2),(zC3),..}
subprogram o State = {(C1,3),(C2,5),(C3,9),...}

= An environment consists of a = In the environment Env, binds x to
number of name bindings memory cell C1,... and memory cell
C1 has the value 3, ...

® A name is bound to a memory cell,
storage location, which can contain a
value.

m Distinguish between environment
and state, e.g. the assignment
A:=B;
changes the current state, but not

the environment. ® A name can have several different

bindings in different environments,
e.g. if a procedure calls itself

environment i
state recursively.
/’\ /_’—\‘
name memory value

Env: name — memory State: memory — value|

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.9

Scope
1. Lexical Scope

® How do we find the object which program £oo;
is referenced by non-local names? |var x;

static
e Two different methods are used: |procedure fie(...);

Lexical and dynamic scope K:;ig
Y = Xj
end;
m 1. Lexical- or static- scope end.

e The object is determined by investigating the program text,
statically, at compile-time

e The object with the same name in the nearest enclosing
scope according to the text of the program

e Is used in the languages Pascal, Algol, C, C++, Java,
Modelica, etc.

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.10

2. Dynamic Scope
B The object is determined during run-time by investigating the
current call chain, to find the most recent in the chain.

| |s used in the languages LISP, APL, Mathematica (has both).
Example: Dynamic-scope

pl| var x; P2 | var x;

p3

p3; p3;

m Which x is referenced in the assignment statement p3?
It depends on whether p3is called from p1 or p2.

TDDBA44 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.11

Lexical or Dynamic Scope

® Which x is program £oo;
H var Xx;
referenced in Static
procedure fiein procedure fie(...);
main var y
_the program below x begin
if y : (* which x? *)
. . atic
e lexical/static
i lure fum( );:
scoping Fum
applies? x
e dynamic
scoping v
applies? fie begin

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.12




iR
Block Structures x*

| Algol, Pascal, Simula, Ada are typical block-structured
languages.

m Blocks can be nested but may not overlap
B Static scoping applies for these languages:

e A name is visible (available) in the block the name is
declared in.

o If block B2 is nested in B1, then a name available in Bl is
also available in B2 if the name has not been re-defined in

Static and Dynamic Characteristics in
Language Constructs
m Static characteristics
Characteristics which are determined during compilation. Examples:
e A Pascal-variable type
Name of a Pascal procedure
Scope of variables in Pascal
Dimension of a Pascal-array
The value of a Pascal constant
Memory assignment for an integer variable in Pascal

] D%namic characteristics . ) -
Characteristics that can not be determined during compilation, but can

B2. only be determined during run-time.
B1 m Examples
B2 o The value of a Pascal variable
e Memory assignment for dynamic variables in Pascal (accessible via
pointer variables)
TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4.1 TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.14
. ;‘“H \ Symbol Table Design
Advantages and Disadvantages B [ of:

B Static constructs
o - Reduced freedom for the programmer
e + Allows type checking during compilation
e + Compilation is easier
e + More efficient execution
B Dynamic constructs

e - Less efficient execution because of dynamic type
checking

e + Allows more flexible language constructions
(e.g. dynamic arrays)

® More about this will be included in the lecture on memory
management.

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4p 1

(decisions that must be made)

m Structuring of various types of information (attributes) for each name:
e string space for names
o information for procedures, variables, arrays, ...
e access functions (operations) on the symbol table
e scope, for block-structured languages.

m Choosing data structures for the symbol table which enable efficient
storage and retrieval of information.
Three different data structures will be examined:

e Linear lists
e Trees
e Hash tables

®m Design choices:
e One or more tables
e Direct information or pointers (or indexes)

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.16

Structuring Problems for Symbol Data

® When a name is declared, the
symbol table is filled with various bits
of information about the name:

= Normally the symbol table index is
used instead of the actual name. For
example, the parse tree for the

statement
0 <assignment>
m m <assop> true
(or index for ":=")
n

®  This is both time- and space-efficient.

m  How can the string which represents
the name be stored?

Next come two different ways.

TDDBA44 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.17

String Space for Identifiers

® Method 1: Fixed space of max
expected characters
FORTRAN4: 6 characters,
Hedrick Pascal: 10 characters

" 5 - attri
KALLE attributes I butes
SUM attributes 3 l-
m Method 2: <length, pointer> .. | KALLE|SUM]...

(e.g. Sun Pascal: 1024 characters

m Method 3: without specifying length: .. $KALLE$SUMS... where $
denotes end of string.

® The name and information must remain in the symbol table as long
as a reference can occur.

®m For block-structured languages the space can be re-used.

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 1.




String Space for Identifiers A R
Method 3, cont. Re Y Information in the Symbol Table Re Y
| |dentifiers can vary in length H pame

® Must be stored in token table | attribute

m Name field of symbol table just points to first character

Symbol table ... v
® To be kept as long as ame ot _link
references can occur T
(— funct

[x[e[s]u]mlo]rfofofofafr[e] [ | ||

m  Usually, full names kept only during compilation

o Exception:
Added to the program’s constant pool in the .data segment
if symbolic debugging or reflection should be enabled
(e.g., gcc —g filel.c to prepare for symbolic debugging)

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2000 4b19

o type (integer, boolean, array, procedure, ...)
e length, precision, packing density

e address (block, offset)

e declared or not, used or not

L [oave [ ]
-

...8i8...

m You can directly allocate space in the symbol table for
attributes whose size is known, e.g. type and value of a
simple variable

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 45 20

Compiler representation of names

B A unique and compact internal representation for a name
is the index (address in compiler address space)
of its symbol table entry.

m Used instead of full name (string) in the internal
representation of a program

© Time and space efficient

Example: Parse-tree for expression xabcd <= yefgh;

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b .21

Symbol table ...
name

Information in the Symbol Table for Arrays R
Fixed Allocation i

m Fixed allocation (BASIC, FORTRAN4)
e The number of dimensions is known at compilation.
o FORTRAN4: max 3 dimensions, integer index.

KALLE
Array 3 - Fixed in advance
L1 Ul -
T2 02 Dim. limits
lower/upper bound
L3 U3
INTEGER ~=— Element type

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b .22

Information in the Symbol Table for Arrays R
Flexible Allocation *

m Flexible allocation (Pascal, Simula, ADA, Java)
e Arbitrary number of dimensions, elements of arbitrary type.
e Pascal: var v: array[1..20,'a’.."’z’] of integer

array |1 |20 integer
type

array |'a' |'z'
type

integer

integer

® You can access an element v[i,j] in the above array by calculating
its address: adr = BAS + k*((i-1)*r)+j-1)

TR
b\ £

) o

Symbol Table Data and Operations

m Set of symbol table items ® Operations

e searchable by name + scope e lookup (name)

insert (name )

m Data stored for each entry: put ( name, attribute, value )

e name get ( name, attribute)

e attributes
» type
(int, bool, array, ptr, function)

» address
(block, offset)

» declared or not,

enterscope ()

exitscope()

ADT Dictionary
+

used or not
e where r= number of elements/rows, . Scoping Control
e and k= number of memory cells/elements (bytes, words)
TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 2 TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4h.24




TR
Data Structures for Symbol Tables k*

For flat symbol tables:
(one block of scope)

®m Linear lists
m Hash tables

For nested scopes:

m Trees of flat symbol tables

m Linear lists with scope control
e Only for 1-pass-compilers

Linear lists

ST —sfhamd atr | ——hamd awr | ——pamd ar | ——]|

m Unsorted linear lists

- ( data struct . ® Hash tables with scope control © Easy to implement
See aata structures 1or P B . .
see following slides
ADT Dictionary) ( oniv f ) ; © Space efficient
¢ Onlyfor L-pass-compllers ® Insertion itself is fast
but needs lookup to check if the name was already in
® Lookup is slow
Inserting n identifiers and doing m lookups
requires O(n(n+m)) string comparisons
TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 ey TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4 .26

Hash Table with Chaining (1)

Symbol table entries

Hash Table with Chaining (2)

Symbol table entries

Hash name block - link Hash name block - link
table foo NULL table foo NULL
a NULL a NULL y
b NULL b NULL ]
c —
name Hash name Hash
S| > CHE— "
function function
void foo ( void ) { void foo( void ) {
inta, b, c; inta, b, c;
© Much faster lookup on average
® Degenerates towards linear list for bad hash functions
TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 4h27 TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 42

Hash Table with Chaining (3)

m Search
o Hash the name in a hash function, h(symbol) € [0, k-1]
e where k= table size
o If the entry is occupied, follow the link field.

= [nsertion

e Search + simple insertion at the end of the symbol table (use the sympos
pointer).

m  Efficiency

e Search proportional to n/k and the number of comparisons is (m + n) n/ k
for n insertions and
m searches.

e k can be chosen arbitrarily large.
m Positive
e Very quick search
= Negative
o Relatively complicated
e Extra space required, k words for the hash table.
e More difficult to introduce scoping.

TDDBA44 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 429

Hierarchical Symbol Tables

For nested scope blocks

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b 30




File/module scope:
Global symbol table

Symbol t@

Tree-based Symbol Table

class Bar {
int x;
void fool(...){ ...}
void foo2( ... ) {
intinner21( ... ){

float x; name _attr link
X int
} fool | funct
intinner22( ... ){ foo2 | funct N
double x, y; \
fool( x); SymbdTtable for fool Symbol table for foo2
name _ attr ... link name _ attr ... link
inner21 funct L~
} inner22 M, s
p4

} / /
Symbol table for innlersl Symbol table for inner22
... _linl

ame _ attr ame _ attr ... link

- enterscoe( exiscope( X ioat X Tooubie
! P y |double
TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009

For One-Pass Compilers? Fleimedule scope:
Global symbol table

class Bar {
int x;
void fool(...){ ...}

void foo2( ... ) {
intinner21( ... ){

Symbol t@

float x; name atitrzt = link After code was
. e emitted for fool
resp. for inner21,
intinner22( ... ) { foo2 | funct N7 could release its
double x, y; ﬁ /1 s;mbol table
fool( x); bdl'table fM Symbol table for foo2
name r link name _ attr ... link
inner23| funct L=
} 4 inner22{ fypoet™ //
} ,/ NG A
- Sy}hqgibfefor/)él Symbol table for inner22,
- enterscope(), exitscope() e S ok e d::l‘&e ik
- insert(), lookup() ‘ ldouble
TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 i y

IR
Hash tables with chaining + scoping %:ﬂ}-‘
(For One-Pass Compilers Only) e
Symbol table entries Block
Hash name block - link table
table

Current scope block: 0

Hash

name
N "
function

module prog {
inta, b, c;
void p1() {
intb, c;

insert p1 and enter a new scope block (2)

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 ah

Hash tables with chaining + scoping

Current scope block: 1 Symbol table entries Block
Hash name block - link table
table prog 0 NULL

1
1
prog___| Hash
function

module prog {

inta, b, c;

void p1() {
inth, c;

insert prog and enter a new scope block (1)

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.34

Hash tables with chaining + scoping

Hash tables with chaining + scoping

i)
v

gy
Current scope block: 1 Symbol table entries Block Current scope block: 1 Symbol table entries Block
Hash name block - link table Hash name block -+ link table
table prog 0 NULL table prog 0 NULL
a 1 NULL 1 a 1 NULL 1
b l NULL
a Hash b Hash
function function
module prog { 6 module prog {
inta, b, c; inta, b, c;
void p1() { void p1() {
intb, c; intb, c;
TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 y TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 436




Hash tables with chaining + scoping

Current scope block: 1 Symbol table entries Block
Hash name block - link table
table prog 0 NULL

a 1 NULL 1
b 1 NULL
c 1 —
c Hash
JR— "
function
module prog { 6
inta, b, c;
void p1() {
intb, c;

a and c hash to the same hash value (6) — use chaining

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2000 A

Hash tables with chaining + scoping

Current scope block: 1->2 Symbol table entries Block
Hash name block - link table
table prog 0 NULL

a 1 NULL 1
b 1 NULL 2
2 c 1 —
pl ,| Hash pl 1 NULL
function

module prog {
inta, b, c;
void p1() {
intb, c;

insert p1 and enter a new scope block (2)

TDDBA4 / TDDDI6, C. Kessler, P. Fritzson, IDA, LIU, 2009 b 38

Hash tables with chaining + scoping Be o Hash tables with chaining + scoping
Current scope block: 2 Symbol table entries Block Current scope block: 2 Symbol table entries Block
Hash name block -+ link table Hash name block -+ link table
table prog 0 NULL table prog 0 NULL
a 1 NULL 1 a 1 NULL 1
b a NULL 2 b l NULL 2
c 1 — c 1 —
b ful—r:?:‘:gn pl 1 NULL c ful—r:?:f;gn pl 1 NULL
b 2 — b 2 —1
c 2 —
module prog { module prog { 6
inta, b, c; inta, b, c;
void p1() { void p1() {
intb, c; intb, c;
make hash table point to (statically) closest b — will later find this one first in chain
TDDB44 / TDDD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 4b.39 TDDB44 / TODD16, C. Kessler, P. Fritzson, IDA, LIU, 2009 Ab .40
Operations on Hash-Table with Chaining R
Hash tables with chaining + scoping and Scope (Block) Information Be o
Current scope block: 2 Symbol table entr ™ Declaring x
urrent scope block: ymuol table entries Block o Search along the chain for x’s hash value.
Hash hame b'g°k o link table o When a name (any name) in another block is found, x is not double-defined.
table prog NULL o Insert x at the beginning of the hash chain.
a 1 NULL 1
b a NULL P m  Referencing x
c 1 — e Search along the chain for x’s hash value.
a Ha§h pl 1 NULL e The first x to be found is the right one.
function b 2 — e Ifx is not found, x is undefined.
c 2 — .
® A new block is started
octe pro.g { 6 o Insert block pointer in BLOCKTAB.
inta, b, c;
void p1() {
inth, c; ® End of the block
a=..; e Move the block down in BLOCKTAB.
* Move the block down in SYMTAB.
lookup(a): follow chain links ... o Move the hash pointer to point at the previous block.
TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 b a1 TODBA4 / TODDIS, C. Kessler, P. Fritzson, IDA, LIU, 2009 442




