
1

Peter Fritzson
IDA, Linköpings universitet, 2009.

TDDD16 Compilers and interpreters

TDDB44 Compiler Construction

Formal Languages Part 1
Including Regular Expressions

2.2TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Basic Concepts for
Symbols, Strings, and Languages

Alphabet
A finite set of symbols.
Example:
Sb = { 0,1 } binary alphabet
Ss = { A,B,C,...,Z,Å,Ä,Ö } Swedish characters
Sr = { WHILE,IF,BEGIN,... } reserved words
String
A finite sequence of symbols from an alphabet.
Example:
10011 from Sb
KALLE from Ss
WHILE DO BEGIN from Sr

2.3TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Properties of Strings in Formal Languages
String Length, Empty String

Length of a string
Number of symbols in the string.

Example:
x arbitrary string, |x| length of the string x
|10011| = 5 according to Sb
|WHILE| = 5 according to Ss
|WHILE| = 1 according to Sr

Empty string
The empty string is denoted e, |e| = 0

2.4TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Properties of Strings in Formal Languages
Concatenation, Exponentiation

Concatenation
Two strings x and y are joined together x•y = xy

Example:
x = AB, y = CDE produce x•y = ABCDE
|xy| = |x| + |y|
xy ≠ yx (not commutative)

e x = x e = x
String exponentiation

x0 = e
x1 = x
x2 = xx
xn = x•xn-1, n >= 1

2.5TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Substrings: Prefix, Suffix

Example:
x = abc

Prefix: Substring at the beginning.

Prefix of x: abc (improper as the prefix equals x), ab, a, e

Suffix: Substring at the end.

Suffix of x: abc (improper as the suffix equals x), bc, c, e

2.6TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Languages

A Language = A finite or infinite set of strings which can be
constructed from a special alphabet.
Alternatively: a subset of all the strings which can be
constructed from an alphabet.

∅ = the empty language. NB! {e} ≠ ∅.

Example: S = {0,1}
L1 = {00,01,10,11} all strings of length 2
L2 = {1,01,11,001,...,111, ...} all strings which finish on 1
L3 = ∅ all strings of length 1 which finish on 01

2

2.7TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Closure

S* denotes the set of all strings which can be constructed from
the alphabet

Closure types:
* = closure, Kleene closure
+ = positive closure

Example: S = {0,1}
S* = { e, 0,1,00,01,...,111,101,...}

S+ = S* – {e} = {0,1,00,01,...}

2.8TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Operations on Languages
Concatenation

L, M are languages.

Concatenation operation • (or nothing) between languages
L•M = LM = {xy|x ∈ L and y ∈ M}

L{e} = {e}L = L

L∅ = ∅L = ∅

Example:
L ={ab,cd} M={uv,yz}
gives us: LM ={abuv,abyz,cduv,cdyz}

2.9TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Exponents and Union of Languages

Exponents of languages

L0 = {e}

L1 = L
L2 = L•L
Ln = L•Ln-1, n >= 1

Union of languages
L, M are languages.
L ∪ M = {x| x ∈ L or x ∈ M}
Example: L = {ab,cd} , M = {uv,yz}
gives us: L ∪ M = {ab,cd,uv,yz}

2.10TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Closure of Languages

Closure
L* = L0 ∪ L1 ∪ ... ∪ L∞

Positive closure
L+ = L1 ∪ L2 ∪ ... ∪ L∞ LL* = L* – {e} , if e not in L

L* = {e} ∪ L+

Example: A = {a,b}
A* = {e,a,b,aa,ab,ba,bb,...}

= All possible sequences of a and b.

A language over A is always a subset of A*.

2.11TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Small Language Exercise

2.12TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Regular expressions

Regular expressions are used to describe simple languages,
e.g. basic symbols, tokens.

Example: identifier = letter • (letter | digit)*

Regular expressions over an alphabet S denote a language
(regular set).

3

2.13TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Rules for constructing regular expressions

S is an alphabet,

the regular expression r
describes the language Lr,

the regular expression s
corresponds to the language
Ls, etc.

Each symbol in the alphabet S is
a regular expression which
denotes {a}.

* = repetition, zero or more
times.
+ = repetition, one or more
times.
. concatenation can be left out

Ls
+repetition: (s)+

Ls*repetition: (s)*
Ls.Ltconcatenation: (s).(t)
Ls ∪ Ltunion: (s) | (t)
{ a }a a ∈ S
{e}e

Language LrRegular expression r

|Lowest

.

* +Highest

Priorities

2.14TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Regular Expression Language Examples
Examples: S = {a,b}

1. r=a Lr={a}
2. r=a* Lr={e,a,aa,aaa, ...} = {a}*
3. r=a|b Lr={a,b}={a} ∪ {b}

4. r=(a|b)* Lr={a,b}*={e,a,b,aa,ab,ba,bb,aaa,aab,...}

5. r=(a*b*)* Lr={a,b}*={e,a,b,aa,ab,ba,bb,aaa,aab,...}
6. r=a|ba* Lr={a,b,ba,baa,baaa,...}={a or bai | i≥0}

NB! {anbn | n>=0} cannot be described with regular expressions.
r=a*b* gives us Lr={ai bj | i,j>=0} does not work.
r=(ab)* gives us Lr={(ab)i | i>=0}={e,ab,abab, ... } does not work.

Regular expressions cannot ’’count’’ (have no memory).

2.15TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Finite state Automata and Diagrams

(Finite automaton)
Assume:

regular expression RU = ba+b+ = baa ... abb ... b
L(RU) = { banbm | n, m ≥ 1 }

Recognizer
A program which takes a string x and answers yes/no
depending on whether x is included in the language.
The first step in constructing a recognizer for the language
L(RU) is to draw a state diagram (transition diagram).

2.16TDDD16/B44, P Fritzson, IDA, LIU, 2009.

State Transition Diagram

state diagram (DFA) for banbm

0

1

9 3

2

start
b

a a

b

b

a

a, b

a

b

error state accepting state

2.17TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Interpret a State Transition Diagram

Start in the starting node 0.
Repeat until there is no more input:

Read input.
Follow a suitable edge.

When there is no more input:
Check whether we are in a final state. In this case accept
the string.

There is an error in the input if there is no suitable edge to
follow.

Add one or several error nodes.

2.18TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Input and State Transitions
Example of input: baab

Then accept when there is no
more input and state 3 is an
accepting state.

baab
aab
ab
b
e

0
1
2
2
3

1
2
3
4
5

InputCurrent
State

Step
0

1

9 3

2

start
b

a a

b

b

a

a, b

a

b

error state accepting state

4

2.19TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Representation of State Diagrams by
Transition Tables

The previous graph is a DFA
(Deterministic Finite Automaton).
It is deterministic because at each
step there is exactly one state to
go to and there is no transition
marked ‘‘e’’.
A regular expression denotes a
regular set and corresponds to an
NFA (Nondeterministic Finite
Automaton).

Transition Table
(Suitable for computer representation).

1
9
3
3
9

9
2
2
9

e

b
ba+

ba+b+

no
no
no
yes
no

0
1
2
3
9

Next
state

b

Next
state

a

FoundAcceptState

2.20TDDD16/B44, P Fritzson, IDA, LIU, 2009.

NFA and Transition Tables
Example: NFA for (b|a)* ab

0 1 2
start

a

b

a b

state diagram for (b|a)*ab

no
no
yes

{0}
{2}

{0,1}0
1
2

Acceptbastate

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program,
e.g. for input ab, compared to a DFA.

2.21TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Transforming NFA to DFA
Theorem

Any NFA can be transformed to a corresponding
DFA.

When generating a recognizer automatically, the
following is done:

regular expression → NFA.
NFA → DFA.
DFA → minimal DFA.
DFA → corresponding program code or table.

DFA for (b|a)*ab

a

0 1 2
start

b

a b

a

b

2.22TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Small Regular Expression and
Transition Diagram/Table

Exercise

