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TDDD16 Compilers and interpreters

TDDB44 Compiler Construction

Formal Languages Part 1
Including Regular Expressions

2.2TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Basic Concepts for 
Symbols, Strings, and Languages

Alphabet 
A finite set of symbols.
Example: 
Sb = { 0,1 } binary alphabet
Ss = { A,B,C,...,Z,Å,Ä,Ö }  Swedish characters
Sr = { WHILE,IF,BEGIN,... }  reserved words 
String 
A finite sequence of symbols from an alphabet. 
Example: 
10011 from Sb
KALLE from Ss
WHILE DO BEGIN from Sr
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Properties of Strings in Formal Languages 
String Length, Empty String

Length of a string 
Number of symbols in the string. 

Example:
x arbitrary string, |x| length of the string x 
|10011| = 5 according to Sb
|WHILE| = 5 according to Ss
|WHILE| = 1 according to Sr

Empty string
The empty string is denoted  e,  |e| = 0
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Properties of Strings in Formal Languages
Concatenation, Exponentiation

Concatenation
Two strings x and y are joined together  x•y = xy

Example: 
x = AB, y = CDE  produce  x•y = ABCDE 
|xy| = |x| + |y| 
xy ≠ yx  (not commutative) 

e x = x e = x 
String exponentiation 

x0 = e
x1 = x 
x2 = xx 
xn = x•xn-1, n >= 1
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Substrings: Prefix, Suffix

Example: 
x = abc 

Prefix: Substring at the beginning. 

Prefix of x:  abc (improper as the prefix equals x), ab, a, e

Suffix: Substring at the end. 

Suffix of x: abc (improper as the suffix equals x), bc, c, e
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Languages

A Language = A finite or infinite set of strings which can be 
constructed from a special alphabet. 
Alternatively: a subset of all the strings which can be 
constructed from an alphabet. 

∅ = the empty language.    NB!  {e} ≠ ∅. 

Example:  S = {0,1} 
L1 = {00,01,10,11}   all strings of length 2
L2 = {1,01,11,001,...,111, ...}  all strings which finish on 1
L3 = ∅ all strings of length 1 which finish on 01
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Closure

S* denotes the set of all strings which can be constructed from 
the alphabet

Closure types:
* =  closure, Kleene closure
+  =  positive closure

Example: S = {0,1}
S* = { e, 0,1,00,01,...,111,101,...} 

S+ = S* – {e} = {0,1,00,01,...} 
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Operations on Languages
Concatenation

L, M are languages.

Concatenation operation • (or nothing) between languages
L•M = LM = {xy|x ∈ L and  y ∈ M} 

L{e} = {e}L = L 

L∅ = ∅L = ∅

Example: 
L ={ab,cd}  M={uv,yz} 
gives us:  LM ={abuv,abyz,cduv,cdyz} 

2.9TDDD16/B44, P Fritzson, IDA, LIU, 2009.

Exponents and Union of Languages

Exponents of languages 

L0 = {e} 

L1 = L 
L2 = L•L 
Ln = L•Ln-1, n >= 1

Union of languages 
L, M are languages. 
L ∪ M = {x| x ∈ L  or  x ∈ M} 
Example: L = {ab,cd} , M = {uv,yz}
gives us: L ∪ M = {ab,cd,uv,yz} 
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Closure of Languages

Closure 
L* = L0 ∪ L1 ∪ ... ∪ L∞

Positive closure 
L+ = L1 ∪ L2 ∪ ... ∪ L∞ LL* = L* – {e} , if  e not in L

L* = {e} ∪ L+

Example: A = {a,b} 
A* = {e,a,b,aa,ab,ba,bb,...} 

= All possible sequences of a and b. 

A language over A is always a subset of A*. 
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Small Language Exercise
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Regular expressions 

Regular expressions are used to describe simple languages, 
e.g. basic symbols, tokens. 

Example:  identifier = letter • (letter | digit)*

Regular expressions over an alphabet S denote a language 
(regular set). 
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Rules for constructing regular expressions 

S is an alphabet, 

the regular expression r 
describes the language  Lr, 

the regular expression s 
corresponds to the language 
Ls, etc.

Each symbol in the alphabet S is 
a regular expression which 
denotes {a}. 

* = repetition, zero or more 
times. 
+ = repetition, one or more 
times. 
.  concatenation can be left out

Ls
+repetition:  (s)+

Ls*repetition:  (s)*
Ls.Ltconcatenation:  (s).(t)
Ls ∪ Ltunion:  (s) | (t) 
{ a }a         a ∈ S
{e}e

Language LrRegular expression r

|Lowest

.

* +Highest

Priorities
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Regular Expression Language Examples
Examples: S = {a,b} 

1.  r=a   Lr={a} 
2.  r=a* Lr={e,a,aa,aaa, ...} = {a}* 
3.  r=a|b Lr={a,b}={a} ∪ {b} 

4.  r=(a|b)*   Lr={a,b}*={e,a,b,aa,ab,ba,bb,aaa,aab,...}

5.  r=(a*b*)*     Lr={a,b}*={e,a,b,aa,ab,ba,bb,aaa,aab,...}
6.  r=a|ba*     Lr={a,b,ba,baa,baaa,...}={a or bai | i≥0} 

NB! {anbn | n>=0} cannot be described with regular expressions. 
r=a*b*  gives us  Lr={ai bj | i,j>=0} does not work.
r=(ab)* gives us Lr={(ab)i | i>=0}={e,ab,abab, ... } does not work.

Regular expressions cannot ’’count’’ (have no memory).
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Finite state Automata and Diagrams

(Finite automaton)
Assume: 

regular expression RU = ba+b+ = baa ... abb ... b
L(RU) = { banbm | n, m ≥ 1 } 

Recognizer 
A program which takes a string x and answers yes/no 
depending on whether x is included in the language. 
The first step in constructing a recognizer for the language  
L(RU) is to draw a state diagram (transition diagram). 
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State Transition Diagram

state diagram (DFA) for banbm
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Interpret a State Transition Diagram

Start in the starting node 0. 
Repeat until there is no more input: 

Read input. 
Follow a suitable edge. 

When there is no more input: 
Check whether we are in a final state. In this case accept 
the string. 

There is an error in the input if there is no suitable edge to 
follow. 

Add one or several error nodes. 
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Input and State Transitions
Example of input:  baab

Then accept when there is no 
more input and state 3 is an 
accepting state. 
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Representation of State Diagrams by 
Transition Tables

The previous graph is a DFA 
(Deterministic Finite Automaton). 
It is deterministic because at each 
step there is exactly one state to 
go to and there is no transition 
marked ‘‘e’’. 
A regular expression denotes a 
regular set and corresponds to an 
NFA (Nondeterministic Finite 
Automaton).

Transition Table
(Suitable for computer representation). 
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NFA and Transition Tables
Example:  NFA for (b|a)* ab
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state diagram for (b|a)*ab

no
no
yes

{0}
{2}

{0,1}0
1
2

Acceptbastate

Transition table for (b|a)*ab

It requires more calculations to simulate an NFA with a computer program, 
e.g. for input ab, compared to a DFA.
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Transforming NFA to DFA
Theorem 

Any NFA can be transformed to a corresponding 
DFA.

When generating a recognizer automatically, the 
following is done: 

regular expression  → NFA.
NFA  → DFA.
DFA → minimal DFA.
DFA → corresponding program code or table. 

DFA for  (b|a)*ab
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Small Regular Expression and
Transition Diagram/Table

Exercise


