DDD16 Compilers and interpreters DDB44 Compiler Construction Formal Languages Part 1 Including Regular Expressions

Substrings: Prefix, Suffix

- Example:
 - x = abc

DD16/B44, P Fritzson, IDA, LIU, 2009.

- Prefix: Substring at the beginning.
 - \bullet Prefix of x: abc (improper as the prefix equals x), ab, a, ϵ
- Suffix: Substring at the end.
 - Suffix of x: abc (improper as the suffix equals x), bc, c, ϵ

Languages

- A Language = A finite or infinite set of strings which can be constructed from a special alphabet.
- Alternatively: a subset of all the strings which can be constructed from an alphabet.
 - \emptyset = the empty language. NB! $\{\epsilon\} \neq \emptyset$.
- Example: S = {0,1}
 - L1 = {00,01,10,11} all strings of length 2
 - L2 = {1,01,11,001,...,111, ...} all strings which finish on 1
 - L3 = \varnothing all strings of length 1 which finish on 01

Finite state Automata and Diagrams

- (Finite automaton)
- Assume:
 - regular expression RU = ba+b+ = baa ... abb ... b
 - L(RU) = { $ba^nb^m | n, m \ge 1$ }

Recognizer

IDA. LIU. 2

- A program which takes a string x and answers yes/no depending on whether x is included in the language.
- The first step in constructing a recognizer for the language L(RU) is to draw a state diagram (transition diagram).

Interpret a State Transition Diagram

- Start in the starting node 0.
- Repeat until there is no more input:
 - Read input.

6/B44, P Fritzson, IDA, LIU, 2009

- Follow a suitable edge.
- When there is no more input:
 - Check whether we are in a final state. In this case accept the string.
- There is an error in the input if there is no suitable edge to follow.
 - Add one or several error nodes.

Representation of State Diagrams by Transition Tables

- The previous graph is a DFA (Deterministic Finite Automaton).
- It is deterministic because at each step there is exactly one state to go to and there is no transition marked "\epsilon".
- A regular expression denotes a regular set and corresponds to an NFA (Nondeterministic Finite Automaton).

	State	Accept	Found	Next state	Next state
				а	b
	0	no	ε	9	1
	1	no	b	2	9
	2	no	ba*	2	3
	3	yes	ba+b+	9	3
	9	no			9
Tı (S	ransition Suitable	Table	outer rep	resentat	tion).

X

