TDDD16 Compilers and Interpreters (opt.) f "\
TDDB44 Compiler Construction 3%\,

o

Code Generation
for RISC and Instruction-Level Parallel
Processors

RISC/ILP Processor Architecture Issues
Instruction Scheduling

Register Allocation

Phase Ordering Problems

Integrated Code Generation e rison, christoph Kessler

IDA, LinkBpings universitet, 2008.

=4

TDDD16 Compilers and Interpreters (opt.)
TDDB44 Compiler Construction

oS =
o

1. RISC and Instruction-Level
Parallel Target Architectures

Peter Fritzson, Christoph Kessler
IDA, LinkBpings universitet, 2008.

CISC vs. RISC ;

CIsC m RISC
m Complex Instruction Set Computer m Reduced Instruction Set Computer
® Memory operands for arithmetic and ® Arithmetic/logical operations only on
logical operations possible registers
B M(r1+r2) € M(r1+r2) * M(r3+disp) ® addrl, r2,r1
load (r1), r4
load r3+disp, r5
mul r4, r5

store 15, (r1)

R
Instruction-Level Parallel (ILP) architectures {#}

Single-Issue: (can start at most one instruction per clock cycle)

m Simple, pipelined RISC processors
with one or multiple functional units

e e.g. ARMOE, DLX

Multiple-Issue: (can start several instructions per clock cycle)
B Superscalar processors

= Many instructions ® Few, simple instructions X
m Complex instructions ® Many registers, all general-purpose e e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium
m Few registers, not symmetric typically 32 ... 256 registers | VLIW processors (Very Long Instruction Word)
" Va”""b'? instruction size . = Fixed instruction size and format o e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
= Instruction decoding (often done in ® Instruction decoding hardwired HP Lx, Transmeta Crusoe;
[Tv'gﬂ‘;‘;(ée) takes much silicon most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x
m Example: 80x86, 680x0 m Example: POWER, HP-PA RISC, m EPIC processors (Explicitly Parallel Instruction Computing)
MIPS, ARM, SPARC e e.g. Intel Itanium family (IA-64)
P, Filtzson, C. Kessler_IDA,Linkbpings universitet TDDB4 Code Generaton for BISC and L Processors P, Filtzson, C. Kessler_IDA,Linkbpings universitet 4 TDDB4 Code Generaton for RISC and L Processors
o o TR e o TR
Processors with/without Pipelining Re Y Processor with Simple Pipelining Re Y

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25 instructions/cycle

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11

Instr. retrieval #1 #2 #3

Instr. decoding #1 #2 ‘ﬁ’
Execution #1 #2
Store result ﬂ ﬂ

Instr 1 Instr 2 Instr 3

P_Fritzson. C. Kessler IDA. Linkopings universitet 1DDB44: Code Generation for RISC and ILP Processors

An instruction takes 1 cycle on average with pipeline
i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11

Instr. retrieval #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 |#9

Instr. decoding H#H1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9
Execution #1 |#2 |#3 |#4 |#5 |#6 (#7 |#8
Storeresult #1 |#2 |#3 |#4 |#5 |#6 |#7 |#8

Instr Instr Instr Tnstr Instr
1 2 3 4 5

P_Fritzson, C. Kessler IDA. Linkopings universitet 6 1DDB44: Code Generation for RISC and ILP Processors

_ o R
Processor with Super-Pipelining {&;

A new instruction can begin before the previous one is finished.

Thus you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no. 12 3 4 5 6 7 8 9 10 11

s

Instruction 1 starts ~ ———#>| ~«— Instruction 1 ready

R= Instr. retrieval
D= Instr. decoding
E= Execution

S= Store result

P. Fritzson, C. Kessler IDA, Linkopings universitet 1DDB44; Code Generation for RISC and ILP Processors

A Processor with a Parallel Pipeline 5*3
AL _ A2 _ WB _ l“"j
o f|padr | |add2 | ﬁ, Floating-point
add

M2 _ M3 _ WB
muit, 2 | [mut.3| | e | |Floating-
— o —| point
mult.
IF D U U
li fetch| |i decode
ME wB

write-
execute | [laccess | [pack | [Load/store
— - 123CK

™| |instructions

EX

»] write-

execute | | back Integer
L—»| ——={ %% | instructions
P. Fritzson, C. Kessler _IDA, Linkdpings universitet g 10DB44; Code Generation for RISC and ILP Processors

Problems using Branch Instructions on f\
Simple Pipelined Processors S

Branch instructions force the pipeline to restart
and thus reduce performance.

The diagram below shows execution of a branch
(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance.

Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no. 1 2 3 4 5 6 7 8

Instr. retrieval #1 #2 cbr| #3 | #4

Instr. decoding #1 #2 cbr| #3 #4
Execution #1 2 cbr #3 | #4
Store result #1 #2 #3
P_Fritzson, C. Kessler_IDA, Linkspings universitet 9 TDDBA44; Code Generation for RISC and ILP Processors

. . SR
Summary Pipelined RISC Architectures (s
m A single instruction is issued per clock cycle =
m Possibly several parallel functional units / resources

m Execution of different phases of subsequent instructions overlaps in time.
This makes them prone to:

data hazards (may have to delay op until operands ready),

control hazards (may need to flush pipeline after wrongly predicted branch),

structural hazards (required resource(s)/ e.g. functional units, bus, register,
must not be occupied)

m Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by pipeline stalling

\issue cycle | PM Decoder ALU; DM/ALU, Regs
IF (1 1 IR
1D I 2 |IF ID,
EX b4 m m mn wem
I 4 3 2 1
MEM/EX2 Is 5 |IFs D, EXs MEM, WB
WB Is 6 |IF; IDs EX, MEM; WB,

P_Fritzson, C. Kessler _IDA. Linkopings universi

Reservation Table, Scheduling Hazards TR
(Avoid hazards = resource collisions) ,(‘M .f
add: ALU MULTIPLLER .
tead | tead [Slagd stagd stagd stagd stagd stagd wiite Reservation table
sl 5162 [0 1 o 1 2 3 resul g .
S i o specifies required resource
o occupations
1
2 [Davidson 1975]
’ If we start add at t+2, the bus
write will appear at cycle t+5
mul: ALU | MULTIPLIER
tead | tead | stagd stagd stagd stagd slagd stage] write .
sl fsc2 (0 |1 [0 |1 |2 |3 |iesalt t: mul ...
Tine | opnd] ophd| bus 4l
o
1 t+2: add .. 5
2
3 .. structural
+ hazard
3 at =5

Comparison between Superscalar Processors #34"|
and VLIW processors R

VLIW Processors

Superscalar Processors _
(Very Long Instruction Word)

with multiple loading of instructions
(multi-issue) [I

Instruction flow '/

Several processor units are loaded
simultaneously be different operations in
the same instructions.

E.g. the multiflow machine,

1024 bits, 28 operations,

or specialized graphics processors

P_Fritzson, C. Kessler IDA. Linkopings universitet 12 1DDB44: Code Generation for RISC and ILP Processors

Superscalar Processors AL

A superscalar processor has several function units that can work in parallel and 3"&..—«‘;
which can load more than 1 instruction per cycle.

The word superscalar comes from the fact that the processor executes more
than 1 instruction per cycle.

The diagram below shows how a maximum of 4 units can work in parallel, which
in theory means they work 4 times faster.

The type of parallelism used depends on the type of instruction and
dependencies between instructions.

Processor cycle no: 1 2 3 4 5 6 7 8 9 10 11

instruction 1starts —~ R, (D, [E, | S, [Instruction 1 ready

R2|D2|E2 | S2

R3| D3| Es|Ss

Rq|Da|Esl|Ss

R | D | Es | Se

R7| D7| E7 | Sy

R= Instr. retrieval
D= Instr.decoding

Rg| Dg|Es | Ss

E= Execution
Hg| Dg | Eg | So
S= Store result
P. Fritzson, C. Kessler _IDA, Linkdpings universitet 13 10DB44; Code Generation for RISC and ILP Processors

R
Superscalar Processor s,\‘_*}

B Run-time scheduling by instruction dispatcher
e convenient (sequential instruction stream — as usual)
o limited look-ahead buffer to analyze dependences, reorder instr.
e high silicon overhead, high energy consumption

m Example: Motorola MC 88110

2-way, in-order issue
H'Pclr

superscalar
sce 1 nee 2 DISPATCHER
In Tl internal instruction
= v bulfer 2i boas)

P. Fritzson, C. Kessler IDA, Linkopings universite

A Parallel Superscalar Pipeline {i:‘

fe Y

Ds _ ID _ Al _ A2 _ WB _
instruction|
te-
dispaich | |idecode| |add1 | [add2 | |pm)
.| . back Fioating-point
M2 M3 _ wa Floating-
M mn Ipoint
write
muit. 2 | | muit. 3] | pack | ™It
| [T L back
IF
i fetch
_ID _EX _[ME _ WB _
-
i decode| | execute | [memonf | & | |Loadistore
et instructions
L
_ 1D EX -
write-
i decode| |execute | | back | |Integer
| ——| +———»| ——| |instructions
e
P_ Fritzson, C. Kessler_IDA, Linkbpings universitet t TDDB44; Code Generation for RISC and ILP Processors

Branch Effects on Performance for Deeply R
Pipelined Superscalar Processors e

Branch-instructions force the pipeline to restart and thus reduce
performance. Worse on deeply pipelined superscalar processors.

The diagram shows Cycleno. 1 2 3 4 5 6 7 8
execution o.f.a branch Instr. retr.

(cbr = conditional
branch) to instruction
#3, which makes the
pipeline restart.

Instr. decode 1

The grey area Instr. decode 2

indicates lost

performance. Execution 1
Only 6 instructions
start during 5 cycles .
. Execution 2
instead of a
maximum of 20. Store
p_Fritzson C.Kessler IDA Linkdpings universitet. 16 TDDB44: Code Generation for RISC and ILP Processors.

R
VLIW (Very Long Instruction Word) architectur#'

m Multiple slots for instructions in long instruction-word
o Direct control of functional units and resources — low decoding OH
m Compiler (or assembler-level programmer)
must determine the schedule statically
e independence, unit availability, packing into long instruction words

e Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

o Silicon- and
energy-efficient REGISTER FILE l

PC ~] :]
addi NCP load NOP

P Fritzson, C. Kessler IDA, Linkopings univ. s

3R

EPIC architectures {g‘

m Based on VLIW

m Compiler groups instructions to LIW'’s (bundles)

m Compiler takes care of resource and latency constraints
m Compiler marks sequences of independent instructions

B Dynamic scheduler assigns resources and reloads new
bundles as required

Liw 1 Liw?2..

‘ ‘ ‘ | ‘ ‘ Instr 1

‘ ‘ | ‘ | | instr2

LIW 2 cont Lw 3 ete.

P_Fritzson, C. Kessler IDA. Linkopings universitet 18 1DDB44: Code Generation for RISC and ILP Processors

TDDD16 Compilers and Interpreters (opt.)
TDDB44 Compiler Construction

2. Instruction Scheduling

The Instruction Scheduling Problem

B Schedule the instructions in such an order that parallel
function units are used to the greatest possible degree.

H Input:
e Instructions to be scheduled
e A data dependency graph
e A processor architecture
o Register allocation has (typically) been performed

® Output:
e A scheduling of instructions which minimizes execution
time
Peter Fritzson, Christoph Kessler
DA, Linkopings universitet, 2008. P Fritzson, C. Kessler _IDA, Linkopings universitet Q TDDB44: Code Generation for RISC and ILP Processors
R
Example Instructions to be Scheduled Instruction Scheduling (1) k*‘

Instructions Dependency graph

(1 14 [%sp + 0x64], %gl @—
(2) 1d [$sp + 0x68], %11
(3) add %14, %gl, %12 3 »@

(4) add %12, %11, %ol

(5) sethi %hi (0x2000), %17

(6) or %17, 0x240, %17 ! 0x2240 <:> >@
(7) clr %00

(8) mov. 0x5, %02

(9) sethi %hi (0x80000000), %03 @

(10) or %03, 0x2, %03 ! -0x7ffffffe

(11) mov %16, %04
O—O
®

1DDB44: Code Generation for RISC and ILP Processors

P Fritzson, C. Kessler IDA, Linkopings universitet 21

B Map instructions to time slots on issue units (and resources),
such that no hazards occur
> Global reservation table, resource usage map

m Example without data dependences:

lssoe tead | read| A LU MULTLPLIER | white
larit 1 sicl | sc2 | stage stagd slage slagd slage stage resolt
Time opnd ophd O 1|0 (1 |2 |3 bus

¢ omul ...
t+l: add ...
t+2: nop ...

[

[

Instruction Scheduling (2)

m Data dependences imply latency constraints
> target-level data flow graph / data dependence graph

tead [read | ALU MULTIELIER | wiile

[=
u::el stcl | sic2 [slagd stagd stagd stagd stagd stagd tesult
Tirme cpdfoprd]0 (1 10 11 17 13 b
t: mul R1,... o
t+l: nop ... 1
t+2: nop ... 2
3 6
t+4: nop ... +
3

t+6: add ...,R1

latency(mul) = 6

(i
P_Fritzson. C. Kessler IDA, Link 2 1DDB44: Code Generation for RISC and ILP Processors

Instruction Scheduling

Generic Resource model =] el ace [wucmiriien]om
e R i "
m Reservation table £: mul RL,... o medmego 110 L 12 1) lew
E+l: nop ...
E+2: nop ...

Local Scheduling :
(f. Basic blocks / DAGs) 4

m Data dependences t+6: add ...,R1

-> Topological sorting

(T TXTXAXX
X

o List Scheduling
(diverse heuristics)

Global Scheduling
m Trace scheduling, Region scheduling, ...
m Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

P_Fritzson, C. Kessler IDA. Linkopings universitet 24 1DDB44: Code Generation for RISC and ILP Processors

: . . TR
Example of List Scheduling Algorithm {&;

m The level of a task node is
the maximal number of
nodes that are passed on
the way to the final node,
itself included.

® The algorithm: A 4 é tme Pt P2 P3
A
N\

Example of Highest Level First algorithm on a
tree structured task graph, 3 processor units

0
e The level of each node ¢ o | 9 | s
is used as priority.
3 7 6 5

o Whena ¢ .

processor/function unit . R .

is free, assign the R

unexecuted task which 2 2 e\1J |

has highest priority | A
&

and which is ready to
be executed.

Task Graph Gantt Chart

1DDB44; Code Generation for RISC and ILP Processors

P. Fritzson, C. Kessler IDA, Linkopings universitet 5

Example: Topological Sorting (0)
According to Data Dependencies

Not yet considered
Data ready (zero-in-degree set)
Already scheduled, still live

Already scheduled, no longer referenced

cCee

1DDB44; Code Generation for RISC and ILP Processors

P. Fritzson, C. Kessler IDA, Linkopings universitet 6

Example: Topological Sorting (1)
According to Data Dependencies

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still live

cCee

Already scheduled, no longer referenced

a

P Fritzson, C. Kessler IDA, Linkopings universitet 27

R

1DDB44: Code Generation for RISC and ILP Processors

Example: Topological Sorting (2) AL
According to Data Dependencies '*'

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

cCee

Already scheduled, no longer referenced

@:’

a b

P_Fritzson, C. Kessler IDA. Linkopings universitet 2 1DDB44: Code Generation for RISC and ILP Processors

Example: Topological Sorting (3)
According to Data Dependencies

Not yet considered
Data ready (zero-indegree set)
Already scheduled, still live

Already scheduled, no longer referenced

cCee

P Fritzson, C. Kessler IDA, Linkopings universitet 29

1DDB44: Code Generation for RISC and ILP Processors

Example: Topological Sorting (4) AL
According to Data Dependencies '*'

Rt
Not yet considered

Data ready (zero-indegree set)

Already scheduled, still live

cCee

Already scheduled, no longer referenced

abd

and so on...

P_Fritzson, C. Kessler IDA. Linkopings universitet 0 1DDB44: Code Generation for RISC and ILP Processors

. : . R
Topological Sorting and Scheduling :*i
m Construct schedule incrementally

in topological (= causal) order

e "Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in "Tetris”)

e Idea: Find optimal target-schedule by enumerating
all topological sortings ...

» Beware of scheduling anomalies /'

with complex reservation tables! /

_— Instruction needing
3 functional units -

Q

-
A/ /‘\
1DDB44; Code Generation for RISC and ILP Processors

p_Fritzsg) oo o) o 1

Software Pipelining {&;

fori:=1to n
get values;
compute;
store;

end for

iter 1 iter 2 iter 3 iter ...

get values 2
compute 1

get values 1 get values 3
compute 2

store 1

F/

In parallel

P. Fritzson, C. Kessler IDA, Linkopings universitet 1DDB44; Code Generation for RISC and ILP Processors

Software Pipelining of Loops (1)

loop:

unroll once L 4
reschedule N2 3n4 S™6
locally

infinite unrolling not realistic...

Software

pipelining 1 R2 R R \
prologue epilogue
"pattern”, "kernel" for 1 iteration of the modified loop

P_Fritzson, C. Kessler IDA. Linkopings universitet 1DDB44: Code Generation for RISC and ILP Processors

Software Pipelining of Loops (2) {&;
Unit! Unit2 Unitd
] Prologue: A
A B,
By
c. C, A,
D, Dy By
E, DO =1, n-2
F Pattern:
2 TEEE Gy Ay
i Dit1 Bisz
Epilogue: Eny €y
Fpy By
E n
FH
-> More about Software Pipelining in TDDC86
Compiler Optimizations and Code Generation
p_Fritzson, C. Kessler_IDA, Linkspings universitet 4 TDDB44; Code Generation for RISC and ILP Processors

Software Pipelining of Loops (3) f’g\
Modulo Scheduling LN

Assume: 4 units, fully pipelined Ul U2 U3 U4

delay=2 for all instructions || | s / / 1l

A
Assume 2 processor cycles L / 5
e P PR
7 instructions / / /
AB,C,D..G Al~lc|p “
e Pl o
No dependence cyeles ResMIl = Resource L~ .71~

ResMIl = ccil{ 7/4)= 2 Constrained Minimym
e i ~ 7 Initiation Interval

Begin with [= ResMIl =2

] i
e

3]

1DDB44: Code Generation for RISC and ILP Processors

AV
_

N
b

cheduling heuristic
{ABCDEFG)

placement heeristic

as carly as possible

Mark occupied slots in all iluminns.../ i

It not possible, increase [T and try again,,,

P Fritzson, C. Kessler IDA, Linkopings universitet

TDDD16 Compilers and Interpreters (opt.)

e

TDDB44 Compiler Construction

A
o

3. Register Allocation

Peter Fritzson, Christoph Kessler
IDA, LinkBpings universitet, 2008.

Global Register Allocation
m Register Allocation: Determines values (variables, temporaries,
constants) to be kept when in registers

® Register Assignment: Determine in which physical register such a value
should reside.

m Essential for Load-Store Architectures
® Reduce memory traffic (= memory / cache latency, energy)
® |Limited resource
m Values that are alive simultaneously cannot be kept in the same register
m Strong interdependence with instruction scheduling
e scheduling determines live ranges
o spill code needs to be scheduled
m | ocal register allocation (for a single basic block) can be done in linear
time (see previous lecture)

®m Global register allocation on whole procedure body (with minimal spill
code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov'62] [Cocke'71].

1DDB44; Code Generation for RISC and ILP Processors

P Fritzson. C. Kessler IDA, Linkopings universitet

TR
When do Register Allocation Be o
B Register allocation is normally performed at the end of global
optimization, when the final structure of the code and all
potential use of registers is known.

| [tis performed on abstract machine code where you have
access to an unlimited number of registers or some other
intermediary form of program.

®m The code is divided into sequential blocks (basic blocks) with
accompanying control flow graph.

1DDB44; Code Generation for RISC and ILP Processors

P Fritzson. C. Kessler IDA, Linkopings universitet

Live Range

(Here, variable = program variable or temporary)

| A variable is being defined at a program point if it is written
(given a value) there.

| A variable is used at a program point if it is read (referenced
in an expression) there.

| A variable is live at a point if it is referenced there or at some

Interference Graphs

®m The live ranges of two
variables interfere if their
intersection is not empty. X

®m Each live range builds a
node in the interference
graph (or conflict graph)

m If two live ranges

following point that has not (may not have) been preceded by !) y
any definition. interfere, an edge is Interference graph:
. . . L . . . drawn betweenthe
m A variable is reaching a point if an (arbitrary) definition of it, nodes. 4@
or usage (because a variable can be used before it is defined)) .
reaches the point. ® Two adjacent nodes in
. - . . . the graph can not be
| A variable’s live range is the area of code (set of instructions) h
h - - f assigned the same
where the variable is both alive and reaching. register.
e does not need to be consecutive in program text.
P. Fritzson, C. Kessler IDA, Linkopings universitet. 9 TDDB44: Code Generation for RISC and ILP Processors, P. Fritzson, C. Kessler IDA, Linkopings universitet 40 JTDDB44: Code Generation for RISC and ILP Processors
R R
Register Allocation vs Graph Coloring %L*é Register Allocation by Graph Coloring %:ﬂ}-‘

Ty

m Register allocation can be compared with the classic coloring
problem.

e That is, to find a way of coloring - with a maximum of k
colors - the interference graph which does not assign the
same color to two adjacent nodes.

| k = the number of registers.

e On a RISC-machine there are, for example, 16 or 32
general registers. Certain methods use some registers for
other tasks. e.g., for spill code.

m Determining whether a graph is colorable using k colors is
NP-complete for k>3

e In other words, it is unmanageable always to find an

optimal solution.

P_Fritzson. C. Kessler IDA. Linkopings universitet 41 1DDB44: Code Generation for RISC and ILP Processors

m Step 1: Given a program with symbolic registers s1, s2, ...
e Determine live ranges of all variables

i = c+4; load 8(fp),sl t e sl
nop
addi si1,#4,s2 52
store 52, 4(fp) B

d = e-2; subi s1,#2,s3 s3
store 83, 12(fp) ! d *

e = ¢c*i; muali s5l1,s52,34 s4
store s4,8(fp) 1 a l

P. Fritzson, C. Kessler IDA, Linkopings universitet 42 JTDDB44: Code Generation for RISC and ILP Processors.

. . , TR
Register Allocation by Graph Coloring {&;

B Step 2: Build the Register Interference Graph

e Undirected edge connects two symbolic registers (si, sj)
if live ranges of si and sj overlap in time

o Reserved registers (e.g. fp) interfere with all si

physical
symbolic registers registers
i = c+4; load 8(fp),sl ! c =1 @
nop
addi s1,#4,32 - 5l @
store s2,4(fp) [=
d = e-2; subi sl,#2,s3 53 a2 @
store s3,12(fp) ! d { @
¢ = c*l; muli s1,s2,s4d 54 @
store =4,8(fp) 1 a I
P. Fritzson, C. Kessler IDA, Lmkoemtsnmve\slte! 43 JIDDB44: Code Generation for RISC and ILP Processors,

. Ty
Reg. Alloc. by Graph Coloring Cont. k#:f

m Step 3: Color the register interference graph with k colors,
where k = #available registers.

e If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

» This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

i = c+4; load 8(fp),sl ! c =1 @
nop
addi s1,#4,392 s2 @
store s2,4(fp) ! i \

d = e-2; subi sl, #2,6s3 33 @
store s3,12(fp) ! d 4 @

c = c*l; muli sl1,s2,s4 s4

store =4,8(fp) 1 a

This register interference graph cannot be colored
with less than 4 colors, as it contains a 4-clique

e Generation for RISC and ILP Processors

P Fritzson, C. Kessler I

s :z ToUETT

else modify the graph (spill, split, coalesce ... nodes)
and restart.
1/l once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

picka node n to spill and remove it from G

any spills?

R R
Coloring a Graph with k Colors {&; Chaitin’s Register Allocator (1981) {&;
® NP-complete for k>3
: — i find live ranges;
] Chromatu? number y(G) = .mlnlmurj number of colors to color a graph G systematically rename the
m y(G) >=c if the graph contains a c-clique
e Ac-clique is a completely connected subgraph of ¢c nodes bulld intetference graph G
® Chaitin’s heuristic (1981): coalesce copies
S & {s1,s2,...} [l setof spill candidates insert -
choose some s in S. b ibledod .~ While G nonempty:
if s has less than k neighbors in the graph g It ex. node n with degree <k
then // there will be some color left for s: (Smptry (cho Gﬂf remove n from G and push it on the stack
delete s (and incident edges) from the graph | simplify {changes G)] else

select
— ‘While stack is non-empty
T pop n; insert n inte G: assigna colorto n
46

= Notation for cyclic live intervals for loops:
e Intervals for loop variables which do not cross the iteration limit are
included precisely once.
e Intervals which cross the iteration limit are represented as an interval
pair, cyclic interval:
([0, 1), t, tend])

P_Fritzson. C. Kessler IDA. Linkopings universitet 47 1DDB44: Code Generation for RISC and ILP Processors

()
I

P Fritzson, C. Kessler IDA, Linkopings universitet 4

~_

1DDB44: Code Generation for RISC and ILP Processors

P. Fritzson, C. Kessler IDA, Linkopings universitet. 4t JTDDB44: Code Generation for RISC and ILP Processors. P. Fritzson, C. Kessler IDA, Linkopings universitet. TDDB44: Code Generation for RISC and ILP Processors.
Register Allocation for Loops (1) {&; Register Allocation for Loops (2) {&;
m |nterference graphs have some weaknesses: :

L . . . Circular edge graph

e Imprecise information on how and when live ranges interfere. Only 3 interferences at the same time
o No special consideration is taken of loop variables’ live ranges (except

when calculating priority). X3

m |nstead, in a cyclic interval graph:

o The time relationships between the live ranges are explicit. Traditional interference graph, i
o Live ranges are represented for a variable whose live range crosses all variables interfere, 4 registers needed

iteration limits by cyclic intervals. x1

Register Allocation for Loops (3) AL

Live ranges (loop Only)ii"”w—"“’Qt
cyclic intervals

e.g. fori: [0, 5), [5, 6]
x1:[2,4) x2:[3,5)
x3: ([0, 3), [4, 6])

Example:

fori=11to0 100 {

Control flow graph

- i x1 x2 x3
x1=x3+2 i=1 0
:---------- CEEELEEEL LY “ “
X2=x1+x3 = A H
: i <= 100 "
X3 =x2+x1 : T E
} : x1=x3+2 i
y=x3+42 : : I
x2 = X1 + X3 3
e e
All variables 1 H
interfere with i=i
each other — h

AT
need 4 regs? - .)
d y=x3+i+42 6 At most 3 values live at a time
. Fritzson, C. Kessler _IDA, Linkdpings universitet 29 1op > 3 registers sufficient

Live Range Splitting {&f
m |nstead of spilling completely (reload before each use),
it may be sufficient to split a live range at one position

where register pressure is highest

e save, and reload once

#v) Huy) Huy) Huy) rgug Hu,)
I Ta: I(Ez |7 7 - | |u_£k
L L 2 7 Lo
tv) t{z,) 1(t,) 1 st i 1,)
L Ia; E: Eﬁore i~
i) 5 ad g}

P. Fritzson, C. Kessler IDA, Linkopings universitet 50 1DDB44; Code Generation for RISC and ILP Processors

Live Range Coalescing/Combining
(Reduces Register Needs)

AL
LN
m For a copy instruction sj € si

e where si and sj do not interfere

e and si and sj are not rewritten after the copy operation
® Merge si and sj:

e patch (rename) all occurrences of si to sj

e update the register interference graph
m and remove the copy operation.

y

TDDB44 Compiler Construction H

TDDD16 Compilers and Interpreters (opt.) f! !

o

4. Phase Ordering Problems
and Integrated Code Generation

S2RC B E w
3 €52 St
Peter Fritzson, Christoph Kessler
P Fritzson, G Kessler_IDA, Linkbpings universitet . TDDB44: Code Generation for RISC and ILP Processors DA, LinkBpings universitet, 2008.
- ® - ®
Phase Ordering Problems ie Y Phase Ordering Problems (1) be Y

gce,
lcc
Instruction
selection
. . Register
Instruction scheduling allocation
P_Fritzson C.Kessler IDA Linkdpings universitet. 53 TDDB44: Code Generation for RISC and ILP Processors,

Instruction scheduling vs. register allocation

(a) Scheduling first:
determines Live-Ranges
- Register need,
possibly spill-code to be
inserted afterwards

(b) Register allocation first:
Reuse of same register by different
values introduces "artificial”
data dependences
-> constrains scheduler

. a @
.. 12 i3
o 2 N
-7 () (c)
if
Ay
. - O r @ @ 5.2 lalblet-1d|
b= ... f IFEEE]
= ..b.. S, [alc]bld)
14
P_Fritzson, C. Kessler_IDA, Linkspings universitet 4 TDDBA4: Code Generation for RISC and ILP Progessors

5. Integrated Code Generation

T

Instruktion
selection

Register

Instruction scheduling allocation

P_Fritzson, C_Kessler IDA, Linkopings universitet 55 1DDB44; Code Generation for RISC and ILP Processors

R
Our Project at PELAB (Kessler): OPTIMIST ‘i}

Retargetable integrated code
generator

SOUrCE program
(C, C++, Fortran)

Open Source:

LCC, ORC
www.ida.liu.se/~chrke/optimist

QRC HL opt.
- — OPTIMIST
T o getable Integrated code generat
T w7 | (KADML™ | optimization engines: DP, ILP (CPLEX)
functional units
reqglster sets p IR 5
memory modules o]
on tar
Instruction set e target
IDADML ey "~ solufion space
Avaliable specifications:
-TICE201
- ARM SE assembler
- Motorola MCSEK linker
execution/simulation
P Fiitzson, C.Kessler_IDA Linkopings universitet 56 TDDBA4; Code Generation for RISC and ILP Processors

10

