TDDD16 Compilers and Interpreters
TDDB44 Compiler Construction



# LR Parsing, Part 2

## **Constructing Parse Tables**

Parse table construction

Grammar conflict handling

Categories of LR Grammars and Parsers

Peter Fritzson, Christoph Kessle IDA, Linköpings universitet, 200

## An NFA Recognizing Viable Prefixes



- A.k.a. the "characteristic finite automaton" for a grammar G
- States: LR(0) items (= context-free items) of extend. grammar
- Input stream: The grammar symbols on the stack
- Start state:  $[S' \rightarrow -|.S]$  Final state:  $[S' \rightarrow -|S]$
- Transitions:
  - "move dot across symbol" if symbol found next on stack:

$$A \rightarrow \alpha.B\gamma$$
 to  $A \rightarrow \alpha B.\gamma$   
 $A \rightarrow \alpha.b\gamma$  to  $A \rightarrow \alpha b.\gamma$ 

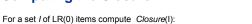
• ε-transitions to LR(0)-items for nonterminal productions from items where the dot precedes that nonterminal:

$$A \rightarrow \alpha.B\gamma$$
 to  $B \rightarrow .\beta$ 

P. ==25(Example:::see::whiteboard) 2

TDDD16/TDDB44 Compiler Construction 20

# **Computing the Closure**



- 1. Closure(I) := I
- 2. If  $\exists [A \rightarrow \alpha.B\beta]$  in Closure(I) and  $\exists production <math>B \rightarrow \gamma$  then add  $[B \rightarrow .\gamma]$  to Closure(I) (if not already there)
- 3. Repeat Step 2 until no more items can be added to Closure(I).

#### Remarks:

- For s=[A → α.Bγ], Closure(s) contains all NFA states reachable from s via ε-transitions, i.e., starting from which any substring derivable from Bβ could be recognized. A.k.a. ε-closure(s).
- Then apply the well-known subset construction to transform Closure-NFA -> DFA.
- DFA states will be sets unioning closures of NFA states

P. Fritzson, C. Kessler, IDA, Linköpings universite

TDDD16/TDDB44 Compiler Construction,

# **Representing Sets of Items**



- Any item  $[A \rightarrow \alpha.\beta]$  can be represented by 2 integers:
  - production number
  - position of the dot within the RHS of that production
- The resulting sets often contain "closure" items (where the dot is at the beginning of the RHS).
  - Can easily be reconstructed (on demand) from other ("kernel") items
    - **Kernel items**: start state [S'  $\rightarrow$  -|.S], plus all items where the dot is not at the left end.
  - Store only kernel items explicitly, to save space

P. Fritzson, C. Kessler, IDA, Linköpings universitet

TDDD16/TDDB44 Compiler Construction,

## **GOTO Function and DFA States**





- To become the state transitions in the DFA
- Now do the **subset construction** to obtain the DFA states:

 $\label{eq:C} \textit{C} := \textit{Closure}(\; \{\, [S' \to -].S] \, \} \;) \qquad \textit{//} \; \; \text{C: Set of sets of NFA states}$  repeat

for each set of items I of C:

for each grammar symbol X

if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C

P. Fritzson, C. Kesster, IDA Linköpings universited are added to Con a TODD16/TDB44 Compiler Construction, 20

## **Resulting DFA**

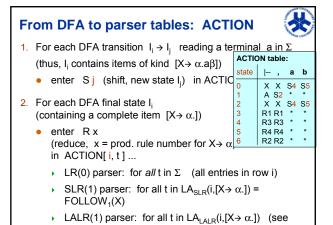


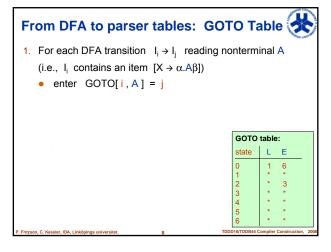


- (Example: see whiteboard)
- All states correspond to some viable prefix
- Final states: contain at least one item with dot to the right
  - recognized some handle → reduce may (must) follow
- Other states: handle recognition incomplete -> shift will follow
- The DFA is also called the GOTO graph (not the same as the LR GOTO Table!!).
- This automaton is deterministic as a FA (i.e., selecting transitions considering only input symbol consumption) but can still be nondeterministic as a pushdown automaton (e.g., in state I₁ above: to reduce or not to reduce?)

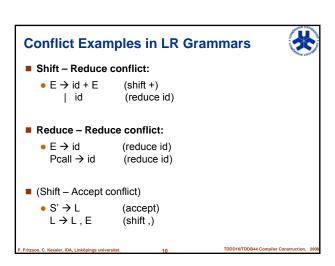
Fritzson, C. Kessler, IDA, Linköpings universitet

TDDD16/TDDB44 Compiler Construction,













**Observe conflicts** in DFA (GOTO graph) kernels or at the latest when filling the ACTION table.

- Shift-Reduce conflict
  - A DFA accepting state has an outgoing transition,
     i.e. contains items [X→α.] and [Y→β.Zγ] for some Z in NυΣ
- Reduce-Reduce conflict
  - A DFA accepting state can reduce for multiple nonterminals i.e. contains at least 2 items [X→α.] and [Y→β.], X!= Y
- (Shift/Reduce-Accept conflict)
  - A DFA accepting state containing [S'→S.|--] contains another item [X→αS.] or [X→αS.bβ]

Only for LR(0) grammars there are no conflicts.

Fritzson, C. Kessler, IDA, Linköpings universitet. 11 TDDD16/TDDB44 Compi

### **Handling Conflicts in LR Grammars**



(Overview):

- Use lookahead
  - if lucky, the LR(0) states + a few fixed lookahead sets are sufficient to eliminate all conflicts in the LR(0)-DFA
    - > SLR(1), LALR(1)
  - otherwise, use LR(1) items  $[X\!\to\!\alpha.\beta,\,a]$  (a is look-ahead) to build new, larger NFA/DFA
    - → expensive (many items/states → very large tables)
  - if still conflicts, may try again with k>1  $\rightarrow$  even larger tables
- Rewrite the grammar (factoring / expansion) and retry...
- If nothing helps, re-design your language syntax
  - Some grammars are not LR(k) for any constant k and cannot be made LR(k) by rewriting either

on C. Kessler IDA Linkönings universitet

## Look-Ahead (LA) Sets



■ For a LR(0) item  $[X \rightarrow \alpha.\beta]$  in DFA-state  $I_i$ , define **lookahead set** LA(  $I_i$ , [X  $ightarrow \alpha.\beta$ ] ) (a subset of  $\Sigma$ )

For SLR(1), LALR(1) etc., the LA sets only differ for reduce items

#### For SLR(1):

```
LA<sub>SLR</sub>( I_i, [X \rightarrow \alpha.] ) = { a in \Sigma: S' =>* \betaXa\gamma} = FOLLOW<sub>1</sub>( X )
for all I_i with [X \rightarrow \alpha.] in I_i
```

- depends on nonterminal X only, not on state Ii
- For LALR(1):

LA<sub>LALR</sub>(  $\emph{I}_{i},$  [X  $\rightarrow \alpha.]$  ) = { a in  $\Sigma: \ S' =>^* \beta Xaw \ and the$ LR(0)-DFA started in  $I_0$  reaches  $I_1$  after reading  $\beta\alpha$  }

• usually a subset of FOLLOW<sub>1</sub>( X ), i.e. of SLR LA set

### Made it simple: Is my grammar SLR(1)?



- Construct the (LR(0)-item) characteristic NFA and its equivalent DFA (= GOTO graph) as above.
- Consider all conflicts in the DFA states:
  - Shift-Reduce:



Consider all pairs of conflicting items  $[X \rightarrow \alpha]$ ,  $[Y \rightarrow \beta.b\gamma]$ : If b in FOLLOW<sub>1</sub>(X) for any of these  $\rightarrow$  not SLR(1).

Reduce-Reduce:



Consider all pairs of conflicting items  $[X \rightarrow \alpha]$ ,  $[Y \rightarrow \beta]$ : If  $FOLLOW_1(X)$  intersects with  $FOLLOW_1(Y) \rightarrow not SLR(1)$ 

• (Shift-Accept: similar to Shift-Reduce)

## **Example: L-Values in C Language**



L-values on left hand side of assignment. Part of a C grammar:

- 1.  $S' \rightarrow S$
- 2.  $S \rightarrow L = R$
- | R
- 4.  $L \rightarrow *R$
- | id
- 6.  $R \rightarrow L$
- Avoids that R (for R-values) appears as LHS of assignments
- But \*R = ... is ok.
- This grammar is LALR(1) but not SLR(1):

# Example (cont.)



LR(0) parser has a shift-reduce conflict in kernel of state I<sub>2</sub>:

- $\blacksquare I_0 = \{ [S' \rightarrow .S], [S \rightarrow .L = R], [S \rightarrow .R], [L \rightarrow .*R], [L \rightarrow .id], R \rightarrow .L] \}$
- $I_1 = \{ [S'->S.] \}$
- I<sub>2</sub> = { [S->L.=R], [R->L.] } Shift = or reduce to R?
- $I_4 = \{ [L->*.R], [R->.L], [L->.*R], [L->.id] \}$
- $I_5 = \{ [L->id.] \}$

■ I<sub>3</sub> = { [S->R.] }

- $I_6 = \{ [S->L=.R], [R->.L], [L->.*R], L->.id] \}$
- $I_7 = \{ [L->*R.] \}$
- I<sub>8</sub> = {[R->L.]}
- I<sub>9</sub> = {[S->L=R.]}

FOLLOW<sub>1</sub>(R) = { |-, =|  $\rightarrow$  SLR(1) still shift-reduce conflict in  $I_2$ as = does not disambiguate

## Example (cont.)



- $I_0 = \{ [S'->.S], [S->.L=R], [S->.R], [L->.*R], [L->.id], R->.*$
- $I_1 = \{ [S'->S.] \}$
- I<sub>2</sub> = { [S->L.=R], [R->L.] }
- I<sub>3</sub> = { [S->R.] }
- $I_4$  = { [L->\*.R], [R->.L], [L->.\*R], [L->.id] }
- $I_5 = \{ [L->id.] \}$
- I<sub>6</sub> = { [S->L=.R], [R->.L], [L->.\*R], L->.id] }
- $I_7 = \{ [L->*R.] \}$
- I<sub>8</sub> = { [R->L.] }
- I<sub>9</sub> = { [S->L=R.] }

 $LA_{LALR}(I_2, [R->L]) = \{ |- \}$   $\rightarrow$  LALR(1) parser is conflict-free as computation path  $I_0...I_2$  does not really allow = following R. = can only occur after R if "\*R" was encountered before.

## LALR(1) Parser Construction



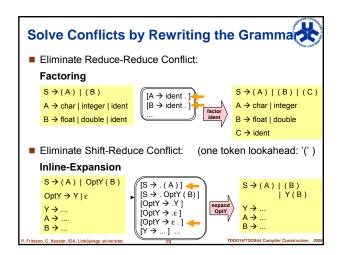
(simple but not practical)

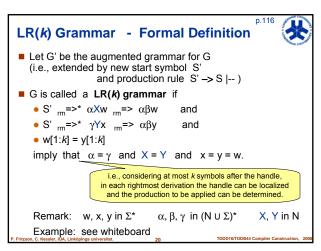
- 1. Construct the LR(1) items (see later). (If there is already a conflict, stop.)
- 2. Look for sets of LR(1) items that have the same kernel, and merge them.
- Construct the ACTION table as for LR(1). If a conflict is detected, the grammar is not LALR(1).
- Construct the GOTO function: For each merged  $J = I_1 \cup I_2 \cup ... \cup I_n$ the kernels of  $\mathrm{GOTO}(l_1, X)$ , ...,  $\mathrm{GOTO}(l_r, X)$  are identical because the kernels of  $l_1, ..., l_r$  are identical.

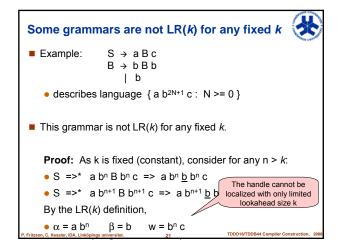
Set GOTO(J, X) := U { I: I has the same kernel as GOTO( $I_1$ , X) }

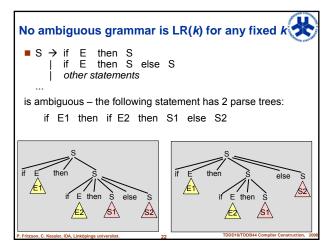
Method 2: (details see textbook)

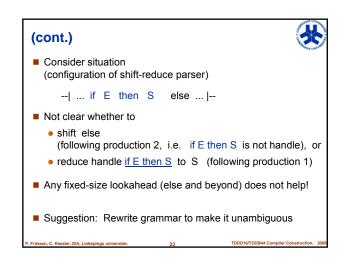
- 1. Start from LR(0) items and construct kernels of DFA states  $I_0$ ,  $I_1$ , ...
- Compute lookahead sets by propagation along the GOTO(I,X) edges (fixed point iteration).

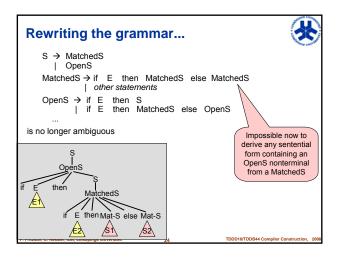












## Some grammars are not LR(k) for any fixed k



■ Grammar with productions

 $S \rightarrow a S a \mid \epsilon$ 

is unambiguous but not LR(k) for any fixed k. (Why?)

■ An equivalent LR grammar for the same language is  $S \rightarrow \text{a a S} \quad | \quad \epsilon$ 

\_\_\_\_

## LR(1) Items and LR(k) Items



**LR**(*k*) **parser**: Construction similar to LR(0) / SLR(1) parser, but plan for distinguishing between states for *k*>0 tokens **lookahead** already from the beginning

- States in the LR(0) GOTO graph may be split up
- LR(1) items:

[A-> $\alpha$ . $\beta$ , a] for all productions A-> $\alpha\beta$  and all a in  $\Sigma$ 

- Can be combined for lookahead symbols with equal behavior:  $[A->\alpha,\beta,a|b]$  or  $[A->\alpha,\beta,L]$  for a subset L of  $\Sigma$
- Generalized to k>1: [  $A->\alpha.\beta$  ,  $a_1a_2...a_k$  ]

**Interpretation of** [ A-> $\alpha$ . $\beta$  , a ] in a state:

- If β not ε, ignore second component (as in LR(0))
- If  $\beta = \varepsilon$  i.e.  $[A > \alpha]$ , reduce only if next input symbol = a.

## LR(1) Parser



- NFA start state is [S'->.S, |-]
- Modify computation of Closure(I), GOTO(I,X) and the subset computation for LR(1) items
  - Details see [ASU86, p.232] or [ALSU06, p.261]
- Can have many more states than LR(0) parser
  - Which may help to resolve some conflicts

Fritzson, C. Kessler, IDA, Linköpings universitet

DDD16/TDDB44 Compiler Construction, 2

## Interesting to know...



- For each LR(k) grammar with some constant k>1 there exists an equivalent\* grammar G' that is LR(1).
- For any LL(k) grammar there exists an equivalent LR(k) grammar (but not vice versa!)
  - e.g., language { a<sup>n</sup> b<sup>n</sup>: n>0 } U { a<sup>n</sup> c<sup>n</sup>: n > 0 } has a LR(0) grammar but no LL(k) grammar for any constant k.
- Some grammars are LR(0) but not LL(k) for any k
  - e.g., S → A b

 $A \rightarrow Aa \mid a$  (left recursion, could be rewritten)

\* Two grammars are equivalent if they describe the same language.

sler, IDA, Linköpings universitet.

TDDD16/TDDB44 Compiler Construction, 20