sosom

TDDB29 Compilers and interpreters f z’a

TDDB44 Compiler Construction 3 §'
Rl

LL Parsing Issues
Beyond Recursive Descent

LL(k)

LL items

Finite pushdown automaton
FIRST and FOLLOW
Table-driven Predictive Parser

Christoph Kessler, IDA,
Linkapings universitet, 2007.

LL(K)

m Given:
o Context-free grammar G = (N, %, P, S)
e Integer k>0

m Gis (in) LL(K) if:
for any two leftmost derivations
o S=" uYo => ufo=>" ux and
o S=" uYo=>uyo=>"uy

with x{1:Kk] = y{1:K] the k first tokens of xand y
are equal

itholds B =y.

| That is, for fixed left context u, the choice for the "right”
production to apply to Y is uniquely determined
by the next k input tokens.

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.2

m The following grammar is LL(1):

S -> ifid then S else S fi
| while id do S od
| begin S end
| id :=id

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.3

Automaton model IR
Example for parsing context-free languages RCa

Finite pushdown automaton
| a finite automaton with a stack of states

—)
input "tape” |a[:=]b|+|c|$| |

stream of tokens

read-dl
head

Grammar Gis LL(1) =
there exists a finite pushdown
automaton recognizing L(G)
where § is a function (i.e., a

deterministic pushdown
automaton)

ik o) (=)
control
stack of | @

states —
push state

pop state . i i
Transition table Transitions in & are tuples

((current state, input symbol,
top stack element),
(new state,
read action, stack action))

Stack-Bottom
oosnarker o

78¥has universitet, 2007. 5b4

SRR
. 3§ 4|
Context-free items Example Re o

Given CFG G, construct states of the finite pushdown automaton:
®m Add new start symbol S’ with ' —>S§
® For each production A -> o...04 e.g.A->aBc
create k+1 context-free items (= states)

e e.g., [A->.aBc], [A->a.Bc], [A->aB.c], [A->aBc.]

m Construct a predictive parser as finite pushdown automaton:

e start in state [S’->.S $] with empty stack (#)

e halt and accept in state [S’->S $.] with empty stack (#)

e at[A->o.by]: read input symbol, i.e., [A->0.by] — [A->ab.y]

e at[A->a.By]: push [A->0B.y],
determine new production B—>
and start from [B->.]

e at[B->B.]: pop state [A->0B.y] to restore context (if #, error)

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.5

® Grammar with productions { S—>aSb Ic }
m Add new start symbol S': {S’->S; S->aSb; S->c}
m Transition diagram (showing stack actions below arrows):

“

&, stack nonempty)

pop
Arrows for erroneous transitions not shown.
(&)
push [S->aS.b]

(c.) @ (&, stack nonempty)
7
- pop

To be made deterministic by lookahead!

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.6

m For a sentential form o in (N u S)*,
FIRST(cr) denotes the set of all terminals
with which a string derived from o may begin.

m For a nonterminal Ain N,
FOLLOW(A) denotes the set of all terminals
that could appear in a sentential form immediately after A,
i.e., there exists S =>* aAaP for arbitrary o, B

SR YR
FIRST and FOLLOW 2% ; Computing FIRST = FIRST, B\ ;
A~ R

For all grammar symbols X:

m [f X is a terminal, then FIRST(X) = { X}.

m |If X > ¢ is a production, then add € to FIRST(X).

m |f X is a nonterminal and X - Y, Y, ... Y, is a production,

o then place all those a of X in FIRST(X) where
for some i, ais in FIRST(Y)
and ¢ is in all of FIRST(Y,), ..., FIRST(Y,,)
(that is, Y4, ..., Y;; all may derive ¢).
e Ifeisin FIRST(Y) for all j=1,2,....q
then add ¢ to FIRST(X).

rules until no
more terminal
or e can be

added to an

For the example grammar

S ->S; S->aSb; S->c }\
FIRST(a) = {a}, FIRST(b) = {b}, Y G

For any string X, X, ... X, of grammar symbols:
® Add to FIRST(X, X; ... X,) all non-e symbols of FIRST(X,).

m [f e in FIRST(X1), add also all non-e symbols of FIRST(X,),
otherwise done.

m [f g also in FIRST(X,), add also all non-e symbols of FIRST(X),
otherwise done.

= Ifealsoin FIRST(X,), add € to FIRST(X, X, ... X,,)

For the example grammar
§'->8; S->aSb; S->c

FIRST(abc) = {a}
FIRST(Sb) = FIRST(S) = {a,c}

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.9

=== FIRST(c) = {c}
{—
FIRST(S) = FIRST(S)
TDDB29/44, C. Kessler, IDA, Linkpings universitet, 2007 in FIRST,(A) In[GOCCOW. () i FIRST(S) ={a, c} . | B [
R 7]
Computing FIRST (cont.) fx g;; Computing FOLLOW R

Compute FOLLOW(B) for each nonterminal B:

= Add $ to FOLLOW(S)

m If there is a production A —>* B for arbitrary o, B m
then add all of FIRST(B) except ¢ to FOLLOW(B)

m [f there is a production A —> aB, :
or a production A — oBp where € in FIRST(B), i.e. p =>"¢
then add all of FOLLOW(A) to FOLLOW(B).
S

A

For the example grammar B

FOLLOW(S) = {$, b} —

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007.

S ->aSb; S->c
5b.1ﬁ" FIRST®) in FOLLOW(B)

Y Y
Example cont.: FPA made deterministic {jg;g Example (cont.): Transition table (k=1) £ i
. . ' tat: final |lookahead lookahead lookahead lookahead
® Grammar with productions { S—>aSb |c } state -;na aoo anea go anea :0 anea Joraned
m Added new start symbol S {S’'->S$; S->aSb; S->c} [S->.S 8] [no push [S->S.8]; | [Error] push [S->S.8); | [Error]
[S->.aSb] [S->.c]
\ @ SH [S->S.$] [no |[[Error] [Error] [Error] read §;
- [S->S$.]
LISh 58] Arrows for erroneous transitions not shown) [S->S $.] | yes
i @% (b,") [S->.aSb] | no read a; [Error] [Error] [Error]
CisrasD)-20(soasn) - [S>a.st]
[S->a.Sb] | no push [S->aS.b]; | [Error] push [S->aS.b]; | [Error]
[S->.aSb] [S->.c]
;;op [S->aS.b] | no [Error] read b; [Error] [Error]
push [S->aS.b] Disambiguated: [S->aSb.]
seec, read e FIRST,(aSb) = {a} [S->aSb.] | no [Error] pop state [Error] pop state
push [5->a5.b] FIRST, (c) = {c} [S>.c] |[no |[Error] [Error] read c; [Error]
() @ (g, not #) [S->cl]
- pop [S->c.] no [Error] pop state [Error] pop state
TDDB29/44,C. Kessle, DA, LinkSpings universitt, 2007 b1 TODBET T Kessie, A, TGpIgs CRversio, 007 TXH

General approach: Predictive parsing

At any production A -> o
m If eis notin FIRST(x)):

e Parser expands by production A -> o
if current lookahead input symbol is in FIRST (o).

m otherwise (i.e., € in FIRST(a)):

e Expand by production A -> o
if current lookahead symbol is in FOLLOW(A)
orifitis$and $ is in FOLLOW(A).

Use these rules to fill the transition table.
(pseudocode: see [ASU86] p. 190, [ALSUO06] p. 224)

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.13

“a,

S
KL

Summary: Parsing LL(k) Languages

m Predictive LL parser
o iterative, based on finite pushdown automaton
e transition-table-driven
e can be generated automatically
m Recursive-descent parser
® recursive
e manually coded
e easier to fix intermediate code generation, error handling

m Both require lookahead (or backtracking)
to predict the next production to apply

e Removes nondeterminism
o Necessary checks derived from FIRST and FOLLOW sets
e FIRST and FOLLOW are also useful for syntax error recovery

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.14

Homework

m Now, read again the part on recursive descent parsers
and find the equivalent of

e Context-free items (PDA states)
o The stack of states

e Pushing a state to stack

e Popping a state from stack

e Start state, final state

in a recursive descent parser.

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 5b.15

Y

R

P,

“a,

KL

o,
&

