
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and interpreters

TDDB44 Compiler Construction

LL Parsing Issues
Beyond Recursive Descent

LL(k)
LL items
Finite pushdown automaton
FIRST and FOLLOW
Table-driven Predictive Parser

5b.2TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

LL(k)

Given:

Context-free grammar G = (N, Σ, P, S)

Integer k > 0

G is (in) LL(k) if:

for any two leftmost derivations

S =>*
lm uYα => uβα =>* ux and

S =>*
lm uYα => uγα =>* uy

with x[1:k] = y[1:k]

it holds β = γ.

That is, for fixed left context u, the choice for the ”right”
production to apply to Y is uniquely determined
by the next k input tokens.

the k first tokens of x and y
are equal

5b.3TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Example

The following grammar is LL(1):

S -> if id then S else S fi

| while id do S od

| begin S end

| id := id

5b.4TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Automaton model
for parsing context-free languages

Finite pushdown automaton

a finite automaton with a stack of states

a := b + c $

s1

read-only
head

input ”tape”
stream of tokens

s0

s4

s3

s2

Transition table
δ

Transitions in δ are tuples

((current state, input symbol,
top stack element),

(new state,
read action, stack action))

Grammar G is LL(1) =>
there exists a finite pushdown
automaton recognizing L(G)
where δ is a function (i.e., a

deterministic pushdown
automaton)

finite
control

EOF token

s3

s3

s1

stack of
states

push state

pop state

#Stack-Bottom
marker

5b.5TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Context-free items

Given CFG G, construct states of the finite pushdown automaton:

Add new start symbol S’ with S’ −> S $

For each production A -> α1...αk e.g. A -> aBc

create k+1 context-free items (= states)

e.g., [A->.aBc], [A->a.Bc], [A->aB.c], [A->aBc.]

Construct a predictive parser as finite pushdown automaton:

start in state [S’->.S $] with empty stack (#)

halt and accept in state [S’->S $.] with empty stack (#)

at [A->α.bγ]: read input symbol, i.e., [A->α.bγ] −> [A->αb.γ]

at [A->α.Bγ]: push [A->αB.γ],
determine new production B−>β
and start from [B->.β]

at [B->β.]: pop state [A->αB.γ] to restore context (if #, error)

Prediction!

5b.6TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Example

Grammar with productions { S −> aSb | c }

Add new start symbol S’: { S’ -> S; S -> aSb; S->c }

Transition diagram (showing stack actions below arrows):

[S->.aSb] [S->a.Sb] [S->aS.b] [S->aSb.]
(a,*)

–

[S->c.][S->.c]
(c,*)

–

–
(b,*)

(ε,*)
push [S->aS.b]

push [S->aS.b]
(ε,*)

(ε, stack nonempty)

pop

[S’->.S$] [S’->S $.]

(ε,∗)
push [S’->S.]

push [S’->S.]ε

(ε, stack nonempty)

pop
Arrows for erroneous transitions not shown.

To be made deterministic by lookahead!

[S’->S.$]
($,#)
–

2

5b.7TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

FIRST and FOLLOW

For a sentential form α in (N U S)+,
FIRST(α) denotes the set of all terminals
with which a string derived from α may begin.

For a nonterminal A in N,
FOLLOW(A) denotes the set of all terminals
that could appear in a sentential form immediately after A,
i.e., there exists S =>* αAaβ for arbitrary α, β

A

S

in FIRSTk(A)
in FOLLOWk(A)

5b.8TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Computing FIRST = FIRST1

For all grammar symbols X:

If X is a terminal, then FIRST(X) = { X }.

If X ε is a production, then add ε to FIRST(X).

If X is a nonterminal and X Y1 Y2 ... Yq is a production,

then place all those a of Σ in FIRST(X) where
for some i, a is in FIRST(Yi)

and ε is in all of FIRST(Y1), ..., FIRST(Yi-1)
(that is, Y1, ..., Yi-1 all may derive ε).

If ε is in FIRST(Yj) for all j=1,2,...,q
then add ε to FIRST(X).

X

S

For the example grammar
S’ -> S; S -> aSb; S->c

FIRST(a) = {a}, FIRST(b) = {b},
FIRST(c) = {c}

FIRST(S’) = FIRST(S)

FIRST(S) = { a, c }

YqY1
...

...

Apply these
rules until no
more terminals
or ε can be
added to any
FIRST set.

5b.9TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Computing FIRST (cont.)

For any string X1 X2 ... Xn of grammar symbols:

Add to FIRST(X1 X2 ... Xn) all non-ε symbols of FIRST(X1).

If ε in FIRST(X1), add also all non-ε symbols of FIRST(X2),
otherwise done.

If ε also in FIRST(X2), add also all non-ε symbols of FIRST(X3),
otherwise done.

...

If ε also in FIRST(Xn), add ε to FIRST(X1 X2 ... Xn)

For the example grammar
S’ -> S; S -> aSb; S->c

FIRST(abc) = {a}

FIRST(Sb) = FIRST(S) = {a,c}

5b.10TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Computing FOLLOW

Compute FOLLOW(B) for each nonterminal B:

Add $ to FOLLOW(S)

If there is a production A −>* αBβ for arbitrary α, β
then add all of FIRST(β) except ε to FOLLOW(B)

If there is a production A −> αB,
or a production A −> αBβ where ε in FIRST(β), i.e. β =>* ε,
then add all of FOLLOW(A) to FOLLOW(B).

B

S

in FIRST(B)
in FOLLOW(B)

A

For the example grammar
S -> aSb; S->c

FOLLOW(S) = {$, b}

Apply these
rules until no
more termi-
nals or ε can
be added to
any FOLLOW
set.

5b.11TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Example cont.: FPA made deterministic

Grammar with productions { S −> aSb | c }

Added new start symbol S’: { S’ -> S$; S -> aSb; S->c }

[S->.aSb] [S->a.Sb] [S->aS.b] [S->aSb.]
(a,*)

–

[S->c.][S->.c]
(c,*)

–

–
(b,*)

see a, read ε
push [S->aS.b]

push [S->aS.b]
see c, read ε

(ε, not #)
pop

[S’->.S$] [S’->S$.]

see c, read ε
push [S’->S.]

push [S’->S.]
see a, read ε

(ε, not #)
pop

Arrows for erroneous transitions not shown.

Disambiguated:
FIRST1(aSb) = {a}

FIRST1(c) = {c}

[S’->S.$] –
($,#)

5b.12TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Example (cont.): Transition table (k=1)

pop state[Error]pop state[Error]no[S->c.]

[Error]read c;

[S->c.]
[Error][Error]no[S->.c]

pop state[Error]pop state[Error]no[S->aSb.]

[Error][Error]read b;

[S->aSb.]
[Error]no[S->aS.b]

[Error]push [S->aS.b];

[S->.c]
[Error]push [S->aS.b];

[S->.aSb]
no[S->a.Sb]

[Error][Error][Error]read a;

[S->a.Sb]
no[S->.aSb]

yes[S’->S $.]

read $;

[S’->S $.]
[Error][Error][Error]no[S’->S.$]

[Error]push [S’->S.$];

[S->.c]
[Error]push [S’->S.$];

[S->.aSb]
no[S’->.S $]

lookahead
$

lookahead
c

lookahead
b

lookahead
a

final
?

state

3

5b.13TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

General approach: Predictive parsing

At any production A -> α
If ε is not in FIRST(α)):

Parser expands by production A -> α
if current lookahead input symbol is in FIRST(α).

otherwise (i.e., ε in FIRST(α)):

Expand by production A -> α
if current lookahead symbol is in FOLLOW(A)
or if it is $ and $ is in FOLLOW(A).

Use these rules to fill the transition table.
(pseudocode: see [ASU86] p. 190, [ALSU06] p. 224)

5b.14TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Summary: Parsing LL(k) Languages

Predictive LL parser

iterative, based on finite pushdown automaton

transition-table-driven

can be generated automatically

Recursive-descent parser

recursive

manually coded

easier to fix intermediate code generation, error handling

Both require lookahead (or backtracking)
to predict the next production to apply

Removes nondeterminism

Necessary checks derived from FIRST and FOLLOW sets

FIRST and FOLLOW are also useful for syntax error recovery

5b.15TDDB29/44, C. Kessler, IDA, Linköpings universitet, 2007.

Homework

Now, read again the part on recursive descent parsers
and find the equivalent of

Context-free items (PDA states)

The stack of states

Pushing a state to stack

Popping a state from stack

Start state, final state

in a recursive descent parser.

