
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDB29 Compilers and Interpreters

TDDB44 Compiler Construction

Interpreters

2 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Direct Interpretation

� Given the program source code and the run-time input,

� Interpret the source code directly,
i.e. parse and simulate it, statement by statement
(syntax-directed interpretation)

z UNIX shells (command line interpreter)

z Early interpreters for BASIC, LISP, APL

� Symbol table

z contains also storage for run-time values of program variables

� Full information about source-level program entities

z Good for debugging

� Very slow

z But ok for small scripts

3 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Hybrid Compiler/Interpreter Scenario

Step 1:
� Translate the source program to an internal form

z E.g. quadruples, postfix, abstract syntax tree
� Or to instructions for an abstract machine

z E.g. P-code for Pascal and Modula-2, Diana for Ada,
DVI for LATEX, JVM bytecode for Java, CIL for C#/.NET

Step 2:
� Execute the interpreter

z given the internal form / abstract machine program
z simulate the abstract machine step by step

☺ More efficient than direct interpretation, but
/ still much slower than compiled code, typ. by a factor ~10
☺ Still portable – intermediate form is not processor specific
☺ / Source code cannot be reconstructed completely from intermediate form
☺ Can be stored compactly
☺ Easy to write an interpreter (virtual machine) 4 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Example: JVM Bytecode

� Instructions for the JVM (Java Virtual Machine),
an abstract stack machine

z Executes .class or .jar files (loaded when first referenced)

Heap of loaded classes (program text and static data)

z Program counter PC

z Bytecode instructions (postfix order) have
1 byte opcode with 0 or 1 operand

span 1 or more bytes, depending on operand size

z Run-time stack: Frame pointer fp, Stack pointer sp

☺ Could even be implemented in hardware (e.g. Sun MAJC)

5 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

JVM Bytecode Interpretation

()(I)if (Stack[sp--] == 0) PC = a;
else PC += 3;

ifeq a

()()PC = a; goto a

(I)(I, I)Stack[sp-1] = Stack[sp] +
Stack[sp-1]; sp--; PC++;

iadd

(I)()Stack[sp++] = Stack[fp + v];
PC += 2;

iload v

()(I)Stack[fp + v] = Stack[--sp];
PC += 2; // needs 2 bytes

istore v

(I)
= int-value

()
= don’t care

Stack[sp++] = 0;
PC++; // code needs 1 byte

iconst_0

Stack top
afterwards

Stack top
before

Interpretation (by C code)JVM Instruction
(examples)

6 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Just-In-Time (JIT) Compiling

� A.k.a. dynamic translation

� Program execution starts in interpreter as before

� Whenever control flow enters a new unit of bytecode
(unit could be e.g. a class file, a function, a loop, or a basic block):

z Do not interpret it, but call the JIT compiler that translates it to target
code and replaces the unit with a branch to the new target code

� JIT compiling overhead Æ delay at run-time

z paid once per unit (if code can be kept in memory)

z pays often only off if translated code is executed several times
(e.g., a loop body)

Can also be done lazily: Interpret the unit when executed for the first
time. When re-entering the unit, JIT-compile.

Or pre-compile/pre-JIT to native code ahead of time

z Trade-off:
JIT-generated code quality vs. JIT compiler speed (run-time delay)

2

7 TDDB29/TDDB44 Compiler Construction, 2007C. Kessler, IDA, Linköpings universitet.

Just-In-Time (JIT) Compiling (cont.)

� Typically performance boost by at least one order of magnitude

� Typically still somewhat slower,
but may even be faster than statically compiled code in some cases

z Can use on-line information from performance counters (e.g. #cache
misses) for dynamic re-optimization and memory re-layout

� Example for Java: Sun JDK HotSpot JVM;
for C#: .NET CLR, NGEN

