

NFA and DFA

NFA (Nondeterministic Finite Automaton)

- $\label{eq:entropy} \begin{array}{l} \bullet \end{array} \ \mbox{"empty moves" (reading ϵ) with state change are possible, i.e. entries ($s_i, ϵ, s_i) may exist in δ \\ \end{array}$
- ambiguous state transitions are possible, i.e. entries (s_i , t, s_j) and (s_i , t, s_j) may exist in δ
- NFA **accepts** input string if there *exists* a computation (i.e., a sequence of state transitions) that leads to "accept and halt"

DFA (Deterministic Finite Automaton)

- **•** No ε -transitions, no ambiguous transitions (δ is a function)
- Special case of a NFA

DFA Example DFA with Alphabet $\Sigma = \{0, 1\}$ State set $S = \{ s_0, s_1 \}$ initial state: s₀ $F = \{ s_1 \}$ $\delta = \{ (s_0, 0, s_0), (s_0, 1, s_1), (s_0, 1, s_1)$ (s₁, 0, s₁), $(s_1, 1, s_0)$ Computation for input string 10110: recognizes (accepts) s₀ read 1 strings containing an odd read 0 read 1 number of 1s S₁ s₀ read 1 read 0 s₁ s. accept

From regular expression to code

4 Steps:

- For each regular expression *r* there exists a NFA that accepts L_r [Thompson 1968 see whiteboard]
- For each NFA there exists a DFA accepting the same language
- For each DFA there exists a minimal DFA (min. #states) that accepts the same language
- From a DFA, equivalent source code can be generated. [→Lecture on Scanners]

Theorem: For each regular expression *r* there exists an NFA that accepts L_r [Thompson 1968] **Proof:** By induction, following the inductive construction of regular expressions Divide-and-conquer strategy to construct NFA(*r*): 0. if *r* is trivial (base case): construct NFA(*r*) directly, else: 1. decompose *r* into its constituent subexpressions $r_1, r_2...$ 2. recursively construct NFA(*r*), NFA(r_2), ... 3. compose these to NFA(*r*) according to decomposition of *r* **2 base cases:** Case 1: $r = \varepsilon$: NFA(*r*) = $\int_{0}^{1} \frac{\varepsilon}{1-\varepsilon} \int_{0}^{1-\varepsilon} \frac{1}{\varepsilon} \int_{0}^{1-\varepsilon$

recognizes L(a) = { a }.

(cont.) (cont.) 4 recursive decomposition cases: <u>Case 5</u>: $r = r_1^*$: By ind.-hyp. exists NFA(r₁) <u>Case 3</u>: $r = r_1 | r_2$: By Ind.-hyp. exist NFA(r_1), NFA(r_2) NFA(r) =NFA(r) =recognizes $L(r_1^*) = (L(r_1))^*$. (similarly for $r = r_1^+$) recognizes $L(r_1 | r_2) = L(r_1) U L(r_2)$ <u>Case 6</u>: Parentheses: $r = (r_1)$ <u>Case 4</u>: $r = r_1 \cdot r_2$: By Ind.-hyp. exist NFA(r_1), NFA(r_2) NFA(r) =NFA(r) =(no modifications). recognizes $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$ The theorem follows by induction.