o
TDDB29 Compilers and interpreters f z’a
%,,ébi

Finite Automata

Extra slide material
(see whiteboard)

Christoph Kessler, IDA,
Linkapings universitet, 2007.

s,

éfv‘
KL

Why automata models?

m Automaton: Strongly limited computation model
compared to ordinary computer programs
A weak model (with many limitations) ...
m allows to do static analysis
e e.g. on termination (decidable for finite automata)

e which is not generally possible with a general computation
model

B is easy to implement in a general-purpose programming mode
e e.g. scanner generation/coding, parser generation/coding
e source code generation from UML statecharts

m Generally, we are interested in the weakest machine model
(automaton model) that is still able to recognize a class of
e Lo W= Te [—— 22

®m Given by quintuple (%, S, s,inS, subsetF of S, 3)

direction of moving

input string, |a[:=]b|+|C|$| |
“tape”

read’Qql
S“”:g;":exf head Set S={s, s, S}
alphabet it il T e
(current p of a finite number of states
flnll‘ @ some of them may be
control accepting (final) states (F)
current | input new

state symbol | state

Transitions in & are tuples
read

. curre!t slal@

((current state, input symbol),

SRR SuE
Finite Automaton / Finite State Machine ;% g;; Computation of a Finite Automaton %% ME

m |nitial configuration:
e current state := start state sO
e read head points to first symbol of the input string

m 1 computation step:
e read next input symbol, t

e look up & forentry (current state, t, new state)
to determine new state

e current state := new state
e move read head forward to next symbol on tape
o if all symbols consumed and new state is a final state:

S a S e
o 1 Transition table (new state)) accept and halt
S b S 3 Given as entries in transition table .
) I o otherwise repeat
or as edges in a transition diagram
TDDb 2w v, v 1swosrer, o, Lotimopirigs Universitet, 2007. 2b.3 (directed graph) TDDB29/44, C. Kessler, DA, Linképings universitet, 2007. 2b.4
g"“wmh"—; g"“wum"'g
NFA and DFA £ 5 DFA Example £
u”"muﬂ“"‘ u”"muv""“

NFA (Nondeterministic Finite Automaton)

m "empty moves” (reading €) with state change are possible,
i.e. entries (s, ¢, s) may existin &

B ambiguous state transitions are possible,
i.e. entries (s, t, s) and (s;, t, 5) may existin &

NFA accepts input string if there exists a computation (i.e., a
sequence of state transitions) that leads to "accept and halt”

DFA (Deterministic Finite Automaton)
®m No e-transitions, no ambiguous transitions (3 is a function)
m Special case of a NFA

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 2b.5

m DFA with
Alphabet £={0,1}
State set S={s,, s;} o
initial state: s,
Fo(s) L J
={ (S0, 0, Sp), e

(S0 1, 89), >
(311 01 S1)1
(s1:1.80) }

-0

n recognizes (accepts) Computation for input string 10110:

strings containing an odd S read 1t

number of 1s S, read0
s, read1
s, read1
s, read 0
s, accept

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 2b.6

=

&
From regular expression to code %%

%Q:;

4 Steps:

m For each regular expression r there exists a NFA that accepts
L, [Thompson 1968 - see whiteboard]

m For each NFA there exists a DFA accepting the same
language

m For each DFA there exists a minimal DFA (min. #states) that
accepts the same language

m From a DFA, equivalent source code can be generated.
[->Lecture on Scanners]

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 2b.7

Theorem: For each regular expression r there b
exists an NFA that accepts L, [Thompson 196 4
Proof: By induction,

following the inductive construction of regular expressions

Divide-and-conquer strategy to construct NFA(r):
0. if ris trivial (base case): construct NFA(r) directly, else:
1. decompose rinto its constituent subexpressions r;, r,...
2. recursively construct NFA(r,), NFA(r,), ...
3. compose these to NFA(r) according to decomposition of r

2 base cases: e

Case 1: r=e: NFA() =
with i = new start state, f = final state of NFA(/)
NFA(r) recognizes L(e) ={¢}.

Case?2: r=aforainX: NFA() = a

reco nlzesL _{a}.

(cont.) {j

4 recursive decomposition cases:

Case3: r=r1r,; By lInd.-hyp. exist NFA(r,), NFA(r,)

NFA() =

recognizes L(r, I r,) =L(r;) U L(rp)
Case 4: r=r.r,; BylInd.-hyp. exist NFA(r,), NFA(r,)

NFA() =

recognizes L(r,.) =L(r).L(n)

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 2b.9

(cont.) {j
Case5: r=n* By ind.-hyp. exists NFA(r,)
NFA(n =

recognizes L(r,*) = (L(r))*.
(similarly for r =r,*)

Case 6: Parentheses: r=(r,)
NFA() =

(no modifications).

The theorem follows by induction.]

TDDB29/44, C. Kessler, DA, Linkspings universitet, 2007. 2b.10

