
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 299

Error management

Errors can occur at each phase of compilation.

Lexical analysis

 • Characters outside the alphabet appear,
e.g. "$", "%"

 • Character sequences which do not result in a token,
e.g. "55ES".

Syntactic analysis

 • ";" missing.

 • Badly spelled reserved words, e.g. "BEGNI".

Semantic analysis

 • Type conflicts of operands.

 • Non-declared variables.

 • Incorrect procedure calls (e.g. wrong number of
parameters).

Code optimization

 • Uninitiated variables.

 • Dead code, e.g. procedures which are never called.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 300

Code generation

 • Too large constants.

 • Run out of memory.

Table management

 • Overflow in the table.

And all run-time errors which can occur during execu-
tion:

 • "Array index out of bounds".

 • Write in or read from unopened files.

 • "Illegal reference at 470105".

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 301

The task of the compiler

 • Discover errors.

 • Report errors.

 • Restart after errors, recovery.

 • Correct errors, repair.

Requirements on the error manager

 • Find the error when it occurs.

 • Provide correct and exact error messages which
are not redundant.

 • Find all errors.

 • Not to introduce any new errors.

 • Effective, particularly in time-sharing systems.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 302

Errors

1. Lexical errors

2. Syntactic errors

3. Semantic errors

Lexical and syntatic errors are local, i.e. you do not go
backwards and forwards in the parse stack or in the to-
ken sequence to fix the error. The error is fixed where it
occurs, locally.

} Local

} can be global

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 303

Syntax errors

Syntax errors are discovered when we can not go from
one configuration to another as decided by the stack
contents and input plus parse tables (applies to bottom-
up).

LL- and LR-parsers have a valid prefix property i.e. dis-
cover the error when the substring being analysed to-
gether with the next symbol do not form a prefix of the
language.

LL- and LR-parsers discover errors as early as a
left-to-right parser can.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 304

Example. From PL/1 (where "=" is also used for assig-
ment).

Two methods:

1. Methods that assume a valid prefix (called phrase
level in ASU).

2. Methods based on a valid prefix (but do not assume
a valid prefix) are called global correction in ASU.

The error is discovered here, but the
real error is here. "IF" is missing.

A = B + C * D THEN . . . ELSE . . .

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 305

Minimum distance error correction

Definition:

The least number of operations (such as removal,
inserting or replacing) which are needed to
transform a string with syntax errors to a string
without errors, is called the minimum distance
(Hamming distance) between the strings.

Example. Correct the string below using this principle.

The principle leads to a high level of inefficiency as you
have to try all possibilities and choose the one with the
least distance!

A = B + C * D THEN ... ELSE ...

IF

 Inserting IF is a minimum distance repair.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 306

Parser-defined errors

Let G be a CFG and w = xty an incorrect string, i.e. w
∉ L(G).

If x is a valid prefix while xt is not a valid prefix, t is
called a parser defined error.

Parser-defined error 1:
Change THEN to ";"

A = B+C*D THEN ... ELSE ...

Minimum distance repair:
Insert IF

Parser-defined error 2:
Change ELSE to ";"

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 307

 Methods for syntax error management

1. Panic mode

2. Coding error entries in the ACTION-table

3. Error productions

4. Language-independent methods (not included in
this course)

 4a) Continuation method, Röchrich (1980)

 4b) Automatic error recovery, Burke & Fisher
 (1982)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 308

1. Panic mode

a) Skip input until either

i) Parsing can continue, or

ii) An important symbol has been found
(e.g. PROCEDURE,BEGIN, WHILE,...)

b) If the parsing can not continue:

Pop the stack until the important symbol is
 accepted.

If you reach the stack bottom:

"Quit --Unrecoverable error."

- Much input can be removed.
- Semantic info on the stack disappears.
+ Systematic, easy to implement.
+ Efficient, very fast and does not require extra

memory.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 309

2. Code error entries in the ACTION-table

• In the ACTION-table there are many entries
corresponding to ERROR.

• Study first what types of error occur most and go
into the table and instead of ERROR insert a
pointer to an error management routine which is
to be activated when this particular error state
arises.

- Difficult to foresee all possible cases.
- Much coding.
- Modifying the grammar means recoding the

error entries.
+ Can provide very good error messages.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 310

3. Error productions

Extend the grammar with extra productions that
allow certain errors.

Example. From Pascal:

IF P THEN A := X ; ELSE B := X ;

A kinder grammar which allows ";" here but
provides an error message.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 311

Error productions in Yacc (Controlled panic mode)

Extend the grammar with error productions of the form

A ::= error α

which correspond to the most common errors.

A: is a nonterminal in the grammar

error: fictitious token, reserved word in Yacc

α: is a string of vocabulary symbols or the empty string.

When an error occurs:

1. Pop the stack elements until some state at the top
of the stack has an item of the following form in its
item-set:

 A ::= • error α

2. Shift error in as a token.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 312

3. If α is the empty string, reduce using this rule
A ::= error {semantic action}

and perform the rule’s semantic action which in this
case is a user-defined syntax error management
routine.

If α is not the empty string, Yacc jumps over all
symbols until it finds a string derivable from α, and
reduces it using this rule:

A ::= error α

Example. Yacc jumps over all input symbols until the
next symbol is a semicolon (inclusive) if the
error prediction is:

A ::= error ;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 313

4. Language-independent error management
methods

 • All information about a language is in the parse
tables.

 • By looking in the tables you know what is allowed in
a configuration.

4a) "Röhrich Continuation Method"

Input: w

w = x t y

valid prefix
(already parsed) parser-defined

rest of
token sequence

error

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 314

The algorithm

1. Construct a continuation u, u ∈ Σ∗, and
w’ = xu ∈ L(G).

Example:

x = program foo; begin while a > b

u = do ε end . _!_

2. Remove input symbols until an important symbol is
found (anchor, beacon) e.g. while, if,
repeat, begin etc.

In this case: then is removed as begin is the
anchor symbol.

program foo;

begin

 while a > b then begin

Parser-defined error
 end

end;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 315

3. Insert parts of u after x, and provide an error
message.

"DO" expected instead of "THEN".

"Röhrich Continuation Method"

+ Language-independent
+ Efficient
− A valid prefix can not cause an error.
− Much input can be thrown away.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 316

4b) "Automatic error recovery", Burke & Fisher

Takes into consideration that a valid prefix can be error-
prone.

Problem: you have to ’’back up’’ the stack:

This works if information is still in the
stack but this is not always the case!

if a > b then
c := d; ⇒ is reduced to <statement>
else
e := 1;

Solution: delay a predetermined number of reductions
in a buffer.

stack input

normal

if an error occurs

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 317

The algorithm has three phases:

1. Simple error recovery
2. Scope recovery
3. Secondary recovery

Phase 1: Simple Error Recovery (a so-called token er-
ror)

• Removal of a token
• Insertion of a token
• Replace a token with something else
• Merging: Concatenate two adjacent tokens.
• Error spelling (BEGNI → BEGIN)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 318

Phase 2: Scope Recovery

Insertion of several tokens to switch off open
scope.

Opener Closer

PROGRAM BEGIN END.

.

PROCEDURE BEGIN END;

;

BEGIN END

()

[]

REPEAT UNTIL identifier ;

UNTIL identifier

ARRAY OF identifier ;

OF identifier

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 319

Phase 3: Secondary recovery

Similar to panic mode.

Phase 3 is called if phase 1 and 2 did not succeed
in putting the parser back on track.

 "Automatic error recovery", Burke & Fisher

+ Language-independent
+ Provides very good error messages
+ Able to make modifications to the parse stack

 (by ’’backing up’’ the stack)
− Consumes some time and memory.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 320

Test program for error recovery

 1 PROGRRAM scoptest(input,output);
 2
 3 CONST mxi dlen = 10
 4
 5 VAR a,b,c;d :INTEGER;
 6
 7 arr10 : ARRAY [1..mxidlen] ;
 8
 9
 10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;
 11
 12 VAR i, : INTEGER;
 13
 14 BEGIN)* foo *)
 15
 16 REPEAT
 17
 18 a:= (a + c);
 19
 20 IF (a > b) THEN a:= b ; ELSE b:=a;
 21
 22 PROCEDURE fie(VAR i,j:INTEGER);
 23
 24 BEGIN (* fie *)
 25
 26 a = a + 1;
 27
 28 END (* fie *);
 29
 30
 31
 32 A := B + C;
 33
 34 END.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 321

Error messages from Hedrick Pascal

 1 PROGRRAM scoptest(input,output);
P* 1** ^ **************^
1.^: "BEGIN" expected
2.^: ":=" expected

 3 CONST mxi dlen = 10
P* 1** ^ ^ **
1.^: "END" expected
2.^: "=" expected
2.^: Identifier not declared

 5 VAR a,b,c;d :INTEGER;
P* 1** ^ ^
1.^: ";" expected
2.^: Can't have that here (or something extra or missing before)
2.^: ":" expected

 7 arr10 : ARRAY [1..mxidlen] ;
P* 1** ^^ ^
1.^: Identifier not declared
2.^: Incompatible subrange types
3.^: "OF" expected

 10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;
P* 1** ^********
1.^: Can't have that here (or something extra or missing before)

 12 VAR i, : INTEGER;
P* 1** ^
1.^: Identifier expected

 14 BEGIN)* foo *)
P* 1** ^*******
1.^: Can't have that here (or something extra or missing before)

 20 IF (a > b) THEN a:= b ; ELSE b:=a;
P* 1** ^*****
1.^: ELSE not within an IF-THEN (extra ";","END",etc. before it?)

 22 PROCEDURE fie(VAR i,j:INTEGER);
P* 1** ^

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 322

1.^: "UNTIL" expected
1.^: "END" expected
1.^: ";" expected

 26 a = a + 1;
P* 1** ^******^
1.^: Can't have that here (or something extra or missing before)
2.^: ":=" expected

 32 A := B + C;
P* 1** ^**********
1.^: Can't have that here (or something extra or missing before)

 34 END.
P* 1** ***
? Unexpected end of file

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 323

Error messages from Sun Pascal
 1 PROGRAM scoptest(input,output);
e ------^--- Inserted '['
E -------------------------------------^--- Expected ']'

 3 CONST mxi dlen = 10
e ----------------^--- Deleted identifier

 5 VAR a,b,c;d :INTEGER;
e ------^--- Inserted ';'
e ---------------^--- Replaced ';' with a ','

 7 arr10 : ARRAY [1..mxidlen] ;
E -------------------------------------^- Expected keyword of
E -------------------------------------^- Inserted identifier

 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;
E--------- Procedures cannot have types

 12 VAR i, : INTEGER;
E --------------^--- Deleted ','

 14 BEGIN)* foo *)
E ---------------^--- Malformed statement

 20 IF (a > b) THEN a:= b ; ELSE b:=a;
e -------------------------------------^--- Deleted ';'

before keyword else

 22 PROCEDURE fie(VAR i,j:INTEGER);
E --------^--- Expected keyword until
E --------^--- Expected keyword end
E --------^--- Inserted keyword end matching begin on line 14
e --------^--- Inserted ';'

 26 a = a + 1;
e -------------^--- Replaced '=' with a keyword (null)

 32 A := B + C;
e --------^--- Inserted keyword (null)

 34 END.
E ------^--- Malformed declaration
E ------^--- Unrecoverable syntax error - QUIT

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 324

Error messages from Burke & Fisher's
"Automatic Error Recovery"
 1 PROGRRAM scoptest(input,output);
 ^^^^^^^^
*** Lexical Error: Reserved word "PROGRAM" misspelled

 3 CONST mxi dlen = 10
 ^^^ ^^^
*** Lexical Error: "MXIDLEN" expected instead of "MXI" "DLEN"

 3 CONST mxi dlen = 10
 ^^
*** Syntax Error: ";" expected after this token

 5 VAR a,b,c;d :INTEGER;
 ^
*** Syntax Error: "," expected instead of ";"

 7 arr10 : ARRAY [1..mxidlen] ;
 ^
*** Syntax Error: "OF IDENTIFIER" inserted to match "ARRAY"

 10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;
 ^^^^^^^^^
*** Syntax Error: "FUNCTION" expected instead of "PROCEDURE"

 12 VAR i, : INTEGER;
 ^
*** Syntax Error: "IDENTIFIER" expected before this token

 14 BEGIN)* foo *)
 <------->
*** Syntax Error: Unexpected input

 20 IF (a > b) THEN a:= b ; ELSE b:=a;
 ^
*** Syntax Error: Unexpected ";" , ignored

 20 IF (a > b) THEN a:= b ; ELSE b:=a;
 ^
*** Syntax Error: "UNTIL IDENTIFIER" inserted to match "REPEAT"
*** Syntax Error: "END" inserted to match "BEGIN"

 26 a = a + 1;
 ^

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Autumn 03

Lecture 11 Error handling, etc. Page 325

*** Syntax Error: ":=" expected instead of "="

 32 A := B + C;
 ^
*** Syntax Error: "BEGIN" expected before this token

12 errors detected

