Error management

Errors can occur at each phase of compilation.

Lexical analysis

- Characters outside the alphabet appear, e.g. "\$", "%'
- Character sequences which do not result in a token, e.g. "55ES".

Syntactic analysis

- ";" missing.
- Badly spelled reserved words, e.g. "BEGNI".

Semantic analysis

- Type conflicts of operands.
- Non-declared variables.
- · Incorrect procedure calls (e.g. wrong number of parameters).

Code optimization

- Uninitiated variables.
- Dead code, e.g. procedures which are never called.

Lecture 11 Error handling, etc.

Page 299

Code generation • Too large constants.

• Run out of memory.

Table management

Overflow in the table. ٠

And all run-time errors which can occur during execution:

- "Array index out of bounds".
- Write in or read from unopened files.
- "Illegal reference at 470105".

Lecture 11 Error handling, etc.

Page 300

Autumn 99

Inköping University ept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99	Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11
The task of the compilerDiscover errors.Report errors.	Errors 1. Lexical errors
Restart after errors, recovery.Correct errors, repair.	 2. Syntactic errors 3. Semantic errors
Requirements on the error manager	Lexical and semantic errors are local, i.e. you d backwards and forwards in the parse stack or i ken sequence to fix the error. The error is fixed occurs, locally.
Find the error when it occurs.	
 Provide correct and exact error messages which are not redundant. 	
Find all errors.	
Not to introduce any new errors.	
Effective, particularly in time-sharing systems.	

Errors 1. Lexical errors 2. Syntactic errors 3. Semantic errors Lexical and semantic errors are local, i.e. you do not go backwards and forwards in the parse stack or in the token sequence to fix the error. The error is fixed where it occurs, locally.

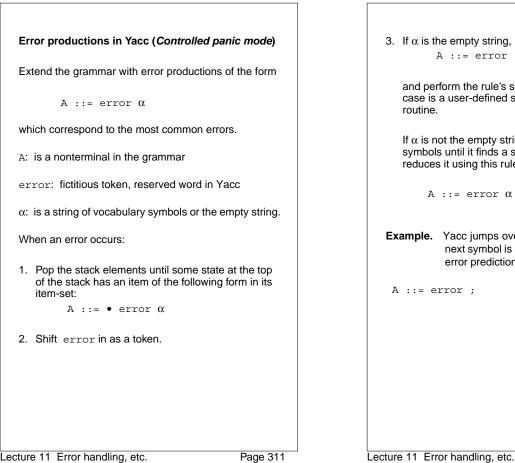
Syntax errors	Example. From PL/1 (where "=" is also used for ass
Syntax errors are discovered when we can not go from	ment).
ne configuration to another as decided by the stack	
ontents and input plus parse tables (applies to bottom-	$A = B + C * D THEN \dots ELSE \dots$
o).	
L- and LR-parsers have a valid prefix property i.e. dis-	
over the error when the substring being analysed to- ether with the next symbol do not form a prefix of the	The error is discovered here, but the
nguage.	real error is here . "IF" is missing.
L- and LR-parsers discover errors as early as a	
ft-to-right parser can.	Two methods:
	Two methods.
	1. Methods that assume a valid prefix (called phras
	level in ASU).
	2. Methods based on a <i>valid prefix</i> (called <i>global</i>
	correction in ASU).
re 11 Error handling, etc. Page 303	Lecture 11 Error handling, etc. Page
g University omputer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99	Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Aut
1 University mputer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99	Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Aut
University nputer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99	Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Aut
linimum distance error correction	Parser-defined errors
<i>linimum distance error correction</i> efinition:	Parser-defined errors
<i>inimum distance error correction</i> efinition: The least number of operations (such as removal,	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L(G).
<i>inimum distance error correction</i> efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L(G).
<i>inimum distance error correction</i> efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i>	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix,
inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix,
inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix,
inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix,
linimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, called a parser defined error.
Efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e \notin L (G). If x is a valid prefix while xt is not a valid prefix, called a parser defined error. \bigwedge A = B+C*D THEN ELSE
linimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, a called a parser defined error.
linimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> <i>(Hamming distance)</i> between the strings. xample. Correct the string below using this principle.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e \notin L (G). If x is a valid prefix while xt is not a valid prefix, for called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";"
linimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, to called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the minimum distance (Hamming distance) between the strings. xample. Correct the string below using this principle. A = B + C * D THEN ELSE	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, for called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle. Image: A = B + C * D THEN ELSE IF	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, recalled a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Inimum distance error correction refinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle. Image: A = B + C * D THEN ELSE IF Inserting IF is a minimum distance repair.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, to called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle. Image: A = B + C * D THEN ELSE IF Inserting IF is a minimum distance repair.	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, for called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Inimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle. Image: A = B + C * D THEN ELSE IF	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, for called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"
Linimum distance error correction efinition: The least number of operations (such as removal, inserting or replacing) which are needed to transform a string with syntax errors to a string without errors, is called the <i>minimum distance</i> (Hamming distance) between the strings. xample. Correct the string below using this principle. $\boxed{A = B + C * D \text{ THEN } \dots \text{ ELSE } \dots }$ IF Inserting IF is a <i>minimum distance repair</i> . he principle leads to a high level of inefficiency as you ave to try all possibilities and choose the one with the	Parser-defined errors Let G be a CFG and w = xty an incorrect string, i.e ∉ L (G). If x is a valid prefix while xt is not a valid prefix, for called a parser defined error. A = B+C*D THEN ELSE Parser-defined error 1: Change THEN to ";" Parser-defined error 2 Change ELSE to ";"

Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99	Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 9
Methods for syntax error management	1. Panic mode
1. Panic mode	a) Skip input until either
2. Coding error entries in the ACTION-table	i) Parsing can continue, or ii) An important symbol has been found
3. Error productions	(e.g. PROCEDURE, BEGIN, WHILE,)
 Language-independent methods (not included in this course) 	b) If the parsing can not continue:
4a) Continuation method, Röchrich (1980)	Pop the stack until the important symbol is accepted.
4b) Automatic error recovery, Burke & Fisher (1982)	If you reach the stack bottom:
	"QuitUnrecoverable error."
	 Much input can be removed. Semantic info on the stack disappears. + Systematic, easy to implement.

Page 307

+ Efficient, very fast and does not require extra memory.

Lecture 11 Error handling, etc.


Autumn 99

Page 308

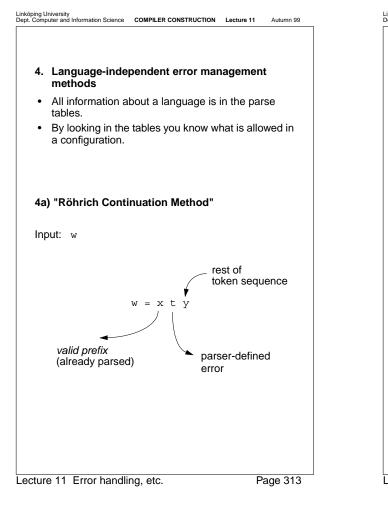
Lecture 11 Error handling, etc.

Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99 2. Code error entries in the ACTION-table In the ACTION-table there are many entries • corresponding to ERROR. Study first what types of error occur most and go • into the table and instead of ERROR insert a pointer to an error management routine which is to be activated when this particular error state arises. - Difficult to foresee all possible cases. - Much coding. - Modifying the grammar means recoding the error entries. + Can provide very good error messages.

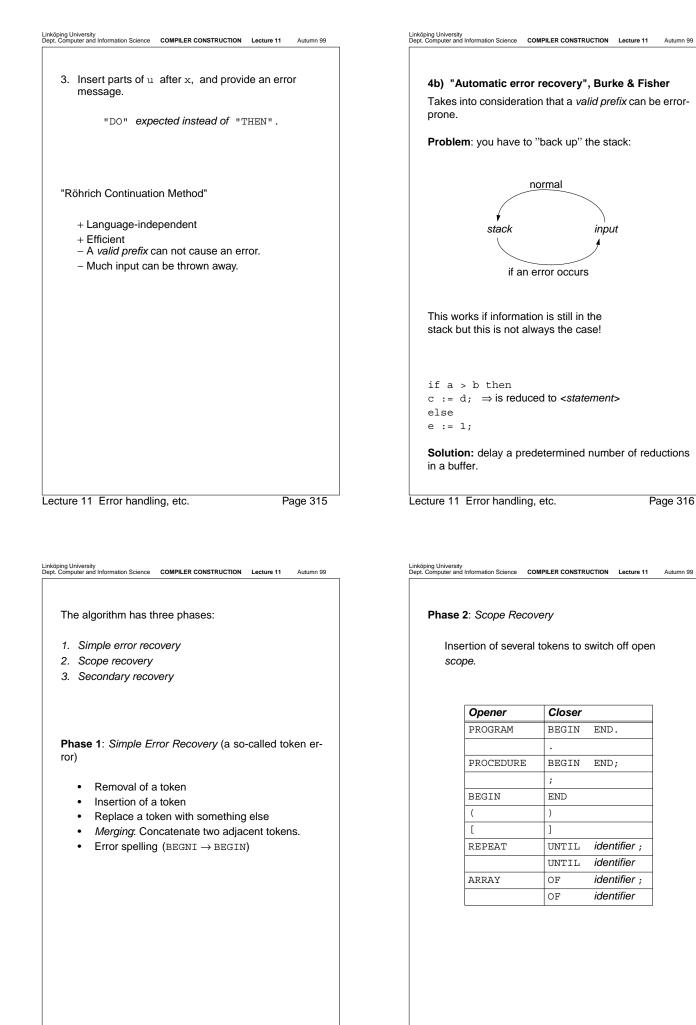
Linköping University
Dept. Computer and Information Science
COMPILER CONSTRUCTION
Lecture 11 Autumn 99 3. Error productions Extend the grammar with extra productions that allow certain errors. Example. From Pascal: IF P THEN A := X ; ELSE B := X ; A kinder grammar which allows ";" here but provides an error message.

3. If α is the empty string, reduce using this rule A ::= error {semantic action}

and perform the rule's semantic action which in this case is a user-defined syntax error management routine.


If $\boldsymbol{\alpha}$ is not the empty string, Yacc jumps over all symbols until it finds a string derivable from α , and reduces it using this rule:

A ::= error α


Example. Yacc jumps over all input symbols until the next symbol is a semicolon (inclusive) if the error prediction is:

A ::= error ;

Page 312

Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99 The algorithm 1. Construct a continuation u, $u \in \Sigma^*$, and $w' = xu \in L(G).$ Example: program foo; begin while a > b then begin Parser-defined error end end; x = program foo; begin while a > b $u = do \epsilon end . _!_$ 2. Remove input symbols until an important symbol is found (anchor, beacon) e.g. while, if, repeat, begin etc. In this case: then is removed as begin is the anchor symbol.

Phase 3: Secondary recovery Similar to panic mode. Phase 3 is called if phase 1 and 2 did not succeed in putting the parser back on track. "Automatic error recovery", Burke & Fisher + Language-independent + Provides very good error messages + Able to make modifications to the parse stack (by "backing up" the stack) - Consumes some time and memory.

		COMPILER CONSTRUC	TION Lecture 1	1 Autumn 9
Error mess	sages f	rom Hedrick	Pascal	
1 PROGRR P* 1** 1.^: "BEGIN" 2.^: ":=" exp	expected	est (input,output)		
3 CONST P* 1** ^ 1.^: "END" ex 2.^: "=" expe 2.^: Identifi	* pected cted	**		
5 VAR a, P* 1** ^ 1.^: ";" expe 2.^: Can't ha before) 2.^: ":" expe	* cted we that h	WTEGER; here (or somethin	ng extra or m	nissing
7 ar P* 1** 1.^: Identifi 2.^: Incompat 3.^: "OF" exp	er not de ible subr	clared	; *	
P* 1**		oo(VAR k:INTEGER) here (or somethin	^*******	nissing
12 VAR P* 1** 1.^: Identifi	er expect			
P* 1**	IN)* foo ^*****		ng extra or n	nissing
20 P* 1**	IF (a	> b) THEN a:= b	; ELSE b:=a	;

Page 321

Lecture 11 Error handling, etc.

```
Test program for error recovery
          PROGRRAM scoptest(input,output);
          CONST mxi dlen = 10
          VAR a,b,c;d :INTEGER;
             arr10 : ARRAY [1..mxidlen] ;
            PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;
    10
    11
12
13
14
15
16
17
18
19
20
21
22
23
            VAR i, : INTEGER;
            BEGIN )* foo *)
              REPEAT
                   a:= (a + c);
                  IF (a > b) THEN a := b; ELSE b := a;
           PROCEDURE fie(VAR i,j:INTEGER);
           BEGIN (* fie *)
    24
25
26
27
28
29
30
              a = a + 1;
           END (* fie *);
    31
32
           A := B + C;
    33
34
         END.
```

```
Lecture 11 Error handling, etc.
```

Page 320

	PROGRAM scoptest(input,output); ^ Inserted '['
-	CONST mxi dlen = 10
	Deleted identifier
	VAR a,b,c;d :INTEGER;
	^ Inserted ';' ^ Replaced ';' with a ','
	-
Е	arr10 : ARRAY [1mxidlen] ;
	OCEDURE foo(VAR k:INTEGER) : BOOLEAN; Procedures cannot have types
	2 VAR i, : INTEGER; Deleted ','
	BEGIN)* foo *)
E	Malformed statement
	Deleted ';' before
keywor	d else
	PROCEDURE fie(VAR i,j:INTEGER);
Е	^ Expected keyword until
	^ Inserted keyword end matching begin on line 1-
	^ Inserted ';'
26	a = a + 1;
	Replaced '=' with a keyword (null)
	A := B + C;
e	^ Inserted keyword (null)
	END.
	^ Malformed declaration ^ Unrecoverable syntax error - QUIT
E	Unrecoverable syncax error - guin

Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99

Error messages from Burke & Fisher' "Automatic Error Recovery"	's
<pre>1 PROGRRAM scoptest(input,output); </pre>	
*** Lexical Error: Reserved word "PROGRAM" misspe	lled
3 CONST mxi dlen = 10	
*** Lexical Error: "MXIDLEN" expected instead of '	"MXI" "DLEN"
3 CONST mxi dlen = 10	
*** Syntax Error: ";" expected after this token	
5 VAR a, b, c; d : INTEGER;	
*** Syntax Error: "," expected instead of ";"	
7 arr10 : ARRAY [1mxidlen] ;	
*** Syntax Error: "OF IDENTIFIER" inserted to match	h "ARRAY"
10 PROCEDURE foo(VAR k:INTEGER) : BOOLEAN;	
*** Syntax Error: "FUNCTION" expected instead of	"PROCEDURE"
12 VAR i, : INTEGER;	
*** Syntax Error: "IDENTIFIER" expected before th	is token
14 BEGIN)* foo *)	
*** Syntax Error: Unexpected input	
20 IF (a > b) THEN a:= b ; ELSE b:=a;	
*** Syntax Error: Unexpected ";" , ignored	
20 IF (a > b) THEN a:= b ; ELSE b:=a;	
*** Syntax Error: "UNTIL IDENTIFIER" inserted to ma *** Syntax Error: "END" inserted to match "BEGIN"	tch "REPEAT"
26 a = a + 1;	
cture 11 Error handling, etc.	Page 324

Linköping University Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 11 Autumn 99 *** Syntax Error: ":=" expected instead of "=" 32 A := B + C; *** Syntax Error: "BEGIN" expected before this token 12 errors detected

Lecture 11 Error handling, etc.

Page 325