
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 235

Code generation

 • Difficult to generate good code

 • Simple to generate bad code

 • There are code-generator generators

Requirements for code generation

 • Correctness

 • High quality

 • Efficient use of the resources of the target machine

 • Quick code generation

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 236

Different forms of intermediate code
and object code

Code generatorIntermediate Object code

Symbol table

 • Syntax tree

 • Postfix code

 • Triples

 • Quadruples

 • Code for abstract
stack machine

 • Absolute
machine code

 • Relocatable
machine code

 • Assembler
code

code

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 237

Code generator environment

Input:

• Internal form

Prerequisites:

• No lexical, syntactic or semantic errors.
• The symbol table contains all information

required, e.g. type and size, addresses, offset
etc.

Output:

• Object code (absolute, relocatable or
assembler)

Front-endsource Codeoptim.interm.
code

Codeinterm.
code

object-
code

Symbol table

code generator

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 238

Disadvantages and advantages of different
types of object code

Absolute code

Generated code is placed directly in memory and
execution starts immediately.

Example:

PASSGO: good for small jobs (student compiler)
Turbo Pascal:has a switch for absolute code or

relocatable code.
+ Quick
− Can not call modules in other languages
− Can not be compiled separately

Relocatable code

Most common, linking and loading needed.

− Slower
+ Can be compiled separately
+ Can call modules in other languages
+ Flexible

Assembly code

− Slowest (assembling, linking, loading required)
+ Makes code generation much simpler (you do

not need to handle future references)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 239

Target machine

Generation of code for the statement: A := B + C

 • Stack machine

PUSH A

PUSH B

PUSH C

ADD

STORE

 • Register machine

MOVE B,R0

ADD C,R0

MOVE R0,A

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 240

Problems with code generation

1. Choice of instructions

Example: A := A + 1

INC A or MOVE A,R0

ADD 1,R0

MOVE R0,A

2. Choice of order

How should arithmetic expressions be calculated so
that LOAD and STORE instructions are minimised?

Consider numerically instable cases (overflow,
underflow).

3. Register use

• Very difficult problem (messy when an operation
requires several registers).

• Very important for the quality of the code.
• Certain registers are used for special purposes,

e.g. the stack pointer.
• Keep variables in registers as much as possible

(problems when trouble-shooting).

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 241

Machine model

 • 8 registers R0-R7

 • Machine operations are similar to PDP-11:

Op source, destination

Example:

MOVE A,B ; B := A

ADD A,B ; B := B + A

SUB A,B ; B := B - A

 • Cost table

Source Destination Cost

register register 1

register memory 2

memory register 2

memory memory 3

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 242

Example: A := B + C

1.
MOVE B,R0 ;2

ADD C,R0 ;2

MOVE R0,A ;2 ⇒ Total cost = 6

2.
MOVE B,A ;3

ADD C,A ;3 ⇒ Total cost = 6

3.
ADD R2,R1 ;If R2 contains B and

;R1 contains C
MOVE R1,A ;and C is not alive after

;this statement
; ⇒ Total cost = 3

4.
ADD R2,R1 ;Same conditions as in (3),

; but the value of A is in R1

; ⇒ Total cost = 1

There is a lot to be gained with good register allocation.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 243

Examples of code generation algorithms

1. Macro-expansion of internal form

2. "A simple code generation algorithm"
(using address and register descriptors)

3. Code generation from DAGs

4. Code generation using code templates (pattern
matching)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 244

Macro-expansion of internal form

Each quadruple is translated to one or more
instructions.

 + very simple
 - poor quality code (slow and requires much memory)
 - poor use of registers

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 245

A simple code generation algorithm (ASU p. 535)

Prerequisites:

Input: sequence of quadruples grouped in

basic blocks.

Output: assembly code (or machine code)

 • The result is kept in registers as long as possible
and is moved into memory only

1. if the register is needed for another calculation
2. at the end of a basic block

 • Basic block: sequence of statements which can
only be traversed sequentially from the first
instruction to the last.

 • A variable x is used locally after a point p if x’s
value is used within the block after p before an
assignment to x (if any) is made.

 • All variables (except temporary variables) are
assumed to be alive (i.e. they can be used before
they are assigned a value) after a basic block.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 246

reg(R): register descriptor, specifies the content of
register R

adr(A): address descriptor, specifies where the
value of A is (possibly in both register and
memory)

Code for quadruple: op B C A

is generated using the following algorithm:

1. L := GETREG() (defined below)

2. B’ := adr(B) prefer register if several
addresses
if B’<>L generate MOV B’,L

3. C’:= adr(C)
generate op C’,L
adr(A):= L
if L is a register, reg(L):= A

4. If B and/or C are not used locally or are alive
after the block, free the registers where B and/or
C are.

When all the quadruples in a basic block have been
traversed,* MOV is generated for the non-temporary
variables that are found only in the register.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 247

Definition of GETREG():

a) If adr(B) is a register and there is no other
variable in this register and if B is not alive after
the block or is used locally:

L := adr(B)
adr(B) := nowhere
return L

b) Otherwise return an empty register

- Otherwise (if there are no more registers)

If A is used locally, empty a register by
generating a MOV to a temporary

c) for some other variable and return the register.

d) Otherwise return adr(A)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 248

Example of "is used locally" and "is alive"

... ...

 a:= b+c
 d:=a-b+d

a := e

5. e,b,c,d are alive

4. b,c are used locally
3. a,b,d are used locally

2. e is alive

1. e is used locally

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 249

Exercise 1:

Generate code for the following statement using the
algorithm presented above:

X := Y * Z + U + V * W

i.e. for the following quadruples:

op B C A

* Y Z T1

+ T1 U T2

* V W T3

+ T2 T3 X

The machine is assumed to have 2 registers

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 250

Exercise 2:

Generate code for the following quadruples. To
understand the algorithm better, assume there are only
two registers, R0 and R1, which can be used:

t1 := m + n

t2 := a + b

t3 := k + t2

 z := t1 - t3

Show the contents of the address- and register-
descriptors, and calculate the cost of each quadruple
and finally the cost of the whole basic block.

Assume that all variables are alive after the block, but
temporary variables are not alive after the block.

The code should be as shown below, but details have
not been included. Check that you get the same result.

MOV m, R0 m R0

ADD n, R0 t1 in R0

MOV a, R1 a R1

ADD b, R1 t2 in R1

MOV R0, t1 ;empty R0, it is needed for something else now!

MOV k, R0 ;t3 will be in R0 after next add

ADD R1, R0 ;free R1, as it is not used again in the block

MOV t1, R1 ;t1 is in memory, load it into a register

SUB R0, R1 ;calculated t1-t3, the result is in R1

MOV R1, z ;end of block=> save R1 in z’s memory address

Total cost of the block = 18 (10 instructions)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 251

A heuristic improvement of the algorithm

You can improve the number of LOAD and STORE
operations by changing the place of some quadruples.
The replacement can be performed as the calculations
are not dependent on each other. For example,
compare the quadruple sequences below:

Given quads. Replaced quads.

t1 := m + n t2 := a + b

t2 := a + b t3 := k + t2

t3 := k + t2 t1 := m + n

 z := t1 - t3 z := t1 - t3

The code for the new quadruple sequence is:

MOV a, R0

ADD b, R0

MOV k, R1

ADD R0,R1

MOV m, R0

ADD n, R0

SUB R1, R0

MOV R0, z

Cost=14 (8 instructions)

Why?

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 252

What we did above was to delay the code generation
for the left argument, for each quadruple, as late as
possible. In this case the only possible delay will be the
code generation for t1, which is performed just before
the code generation for z.

NODE-LISTING-algorithm

You can use a DAG (Directed Acyclic Graph) and the
NODE-LISTING algorithm in ASU, page 560 to get the
required order for the quadruples which code is to be
generated for.

Study the NODE-LISTING algorithm and check that the
order of the quadruples corresponds to the replaced
sequence above.

- z

+ t1

+ t3

+ t2

m n k a b

DAG for the given sequence of quadruples

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 253

Code generation from a DAG

DAG: Directed Acyclic Graph

An abstract syntax tree is a special case of a DAG.

Input: DAG (quadruples in tree form!)

Output: assembly code (or machine code)

Example:
T1 = A + B
T2 = C + D

T3 = E - T2
T4 = T1 - T3

-

+

-

+

A B

E

C D

T1

T4

T2

T3

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 254

The algorithm has two phases:

 • Calculate the need for registers for each sub-tree

 • Traverse the tree and generate code. The register
need guides the traversal.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 255

Phase 1: Calculate the register needs for each sub-tree

For binary trees (each operator has 2 operands).
 n = a node

LABEL(n) = the register needs for the sub-tree
with node n.

 • If n is a left leaf ⇒ LABEL(n):= 1

 • If n is a right leaf ⇒ LABEL(n):= 0

 • If left and right children have different register
needs:
 LABEL(n):= max(LABEL(n.left),

LABEL(n.right))

 • If left and right children have the same register
needs:

LABEL(n):= LABEL(n.left) + 1

+

A B

T1

MOVE A,R0

+

A B

T1

ADD B,R0

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 256

Example:

Easy to calculate the register needs using syntax-
directed translation with bottom-up parsing
(postorder traversal).

-

+

-

+

A B

E

C D

T1

T4

T2

T3

1 0 1 0

1 11

2

2

x denotes the register needs
for the node

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 257

Phase 2: Code generation

Data structures:

RSTACK: the register stack, initialised with all
available registers.

TSTACK: Stack for temporary variables.

Procedures:

Gencode(n):

Recursive procedure which generates code for
sub-trees with root n.

The result is placed in RSTACK[TOP]

Swap(RSTACK)

swaps the top two elements at the top of the stack.

R0

R1

TOP

R0

R1

-

A B32

SUB R1,R0

 i R0 i R1

R0-R1 R0
A-B R0

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 258

Gencode(n): 5 different cases (0 – 4) depending on
the register needs for the sub-trees:

Case 0: n = left leaf ⇒

Print(’MOVE ’, name, RSTACK[TOP]);

Case 1: If n is a node with children n1 and n2 (left and
 right children, resp.) and LABEL(n2)= 0 ⇒

Gencode(n1);

Print(op, name, RSTACK[TOP]);

n
name

n2
name

op

n1

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 259

Case 2: If 1 ≤ LABEL(n1)< LABEL(n2)
and LABEL(n1)< r where r is the number of
registers in the machine.

Swap(RSTACK);

Gencode(n2);

savereg := Pop(RSTACK);

Gencode(n1);

Print(op, savereg, RSTACK[TOP]);

Push(savereg);

Swap(RSTACK);

n2

op

n1

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 260

Case 3: If 1 ≤ LABEL(n2)≤ LABEL(n1)
and LABEL(n2)< r where r is the number of
registers in the machine.

Gencode(n1);

savereg := Pop(RSTACK);

Gencode(n2);

Print(op, RSTACK[TOP], savereg);

Push(savereg);

Case 4: Both n1 and n2 have register needs ≥ r ⇒
store the result in the temporary stack TSTACK.

Gencode(n2); { recursive call }
T := Pop(TSTACK);

Print(’MOVE ’, RSTACK[TOP], T);

Gencode(n1);

Print(op, T, RSTACK[TOP]);

Push(T);

(See Fig 9.26 in ASU)

n2

op

n1

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 261

Code generation using code templates, i.e. code
generation using pattern matching

 • The target machine is described using a set of code
templates.

 • Corresponding instructions are attached to each
code template.

 • The tree is matched with the code templates top-
down.

 • If there is a ’’complicated’’ code template which
corresponds to the whole tree ⇒ write the
corresponding instructions.

 • Otherwise match with the children of the node.

NB! Code can be generated in different contexts.

IF (A-B)=0 THEN A:=B {CMP A,B} Test

D:=(A-B)*C {MOV A,R0

 SUB B,R0} Value

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 9 Autumn 99

Lecture 9 Code generation Page 262

Examples of code templates:

 AL = Address left, AR = Address right.

Shape can be in register, memory or on the stack.

The Graham-Glanville method (1978)

Idea: use a LR-parser for the matching process.

 • Quick matching

 • Compact specification of target machine using a
CFG — Context free grammar.

op = minus context = Test

shape=ANY
type=INTEGER

shape=ANY
type=INTEGER

⇒
instr = {CMP AL, AR}

register need = 0

op = minus context= Value

shape=MEM
type=INTEGER

shape=MEM
type=INTEGER

⇒ instr =

register need = 1

 { MOVE AL, reg
 SUB AR, reg }

