
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 140

Semantic analysis and intermediate
representations

The task of this phase is to check the "static semantics"
and generate the internal form of the program.

Static semantics

Check that variables are defined, operands of a
given operator are compatible, the number of
parameters matches the declaration etc.

Formalism for static semantics?

Internal form

Generation of good code cannot be achieved in a
single pass – therefore the source code is first
translated to an internal form.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 141

Which methods / formalisms are used in the
various phases during the analysis?

1. Lexical analysis: RE (regular expressions)
2. Syntax analysis: CFG (context-free grammar)
3. Semanticanalysisand intermediatecodegeneration:

(syntax-directed translation)

Why not use the same formalism (formal
notation) during the whole analysis?

 • REs are too weak for describing the language’s
syntax and semantics.

 • Both lexical features and syntax of a language can
be described using a CFG. Everything that can be
described using REs can also be described using a
CFG.

 • A CFG can not describe context-dependent (static
semantics) features of a language. Thus there is a
need for a stronger method of semantic analysis
and the intermediate code generation phase.
Syntax-directed translation is commonly used in this
phase.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 142

Follow-up questions:

 • Why are lexical and syntax analysis divided into two
different phases?

 • Why not use a CFG instead of REs in lexical
descriptions of a language?

Answers:

 • Simple design is important in compilers. Separating
lexical and syntax analysis simplifies the work and
keeps the phases simple.

 • You build a simple machine using REs (i.e. a
scanner), which would otherwise be much more
complicated if built using a CFG.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 143

Semantic analysis and intermediate code
generation

Syntax
analysis

Lexical
analysis

source code

Back-end

Intermediate code

machine code

Semantic analysis
and intermediate
code generation

Front-end

S
Y
M
B
O
L

T
A
B
L
E

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 144

The method used in this phase is syntax-directed
translation.

Aim 1: Semantic analysis:

a) Check the program to find semantic errors, e.g. type
errors, undefined variables, different number of
actual and formal parameters in a procedure,

b) Gather information for the code generation phase,
e.g.

var a: real;
b: integer

begin
a:= b;

...

generates code for the transformation:

a := IntToReal(b);

IntToReal is a function for changing integers to a
floating-point value.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 145

Aim 2: Intermediate code generation

Another representation of the source code is generated.

Generation of intermediate code has, among others, the
following advantages:

The internal form is:

+ machine-independent

+ not profiled for a certain language

+ suitable for optimization

+ can be used for interpreting

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 146

Internal forms

 • Infix notation

 • Postfix notation (reverse Polish notation, RPN)

 • Abstract syntax trees, AST

 • Three-address code

• Quadruples

• Triples

Infix notation

Example:

 a := b + c * (d + e)

 • Operands are between the operators (binary
operators).

 • Suitable notation for humans but not for machines
because of priorities, associativities, parentheses.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 147

Postfix notation

(Also called reverse Polish notation)

Example:

where @ denotes unary minus.

 • Operators come after the operands.

 • No parentheses or priority ordering required.

 • Stack machine, compare with an HP calculator.

 • Operands have the same ordering as in infix
notation.

 • Operators come in evaluation order.

 • Suitable for expressions without conditions
 (e.g. if)

Infix Postfix

a + b a b +

a + b * c a b c * +

(a + b) * c a b + c *

a + (-b - 3 * c) a b @ 3 c * - +

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 148

Given an arithmetic expression in reverse Polish
notation it is easy to evaluate directly from left to right.

Often used in interpreters.

We need a stack for storing intermediate results.

 • If numeric value

Push the value onto the stack.

 • If identifier

Push the value of the identifier (r-value) onto the
stack.

 • If binary operator

Pop the two uppermost elements , apply the
operator to them and push the result.

 • If unary operator

Apply the operator directly to the top of the
stack.

When the expression is completed, the result is on the
top of the stack.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 149

Example: Evaluate the postfix expression below.

a b @ 3 c * - +

Given that a = 34, b = 4, c = 5

corresponding infix notation: a + (-b - 3 * c)

Step Stack Input
1 ⎯⎜ ab@3c*-+ |⎯

2 ⎯⎜34 b@3c*-+|⎯

3 ⎯⎜34 4 @3c*-+|⎯

4 ⎯⎜34 -4 3c*-+|⎯

5 ⎯⎜34 -4 3 c*-+|⎯

6 ⎯⎜34 -4 3 5 *-+|⎯

7 ⎯⎜34 -4 15 -+|⎯

8 ⎯⎜34 -19 +|⎯

9 ⎯⎜15 |⎯

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 150

Extending Polish notation

 • Assignment

• := binary operator,

• lowest priority for infix form,

• uses the l-value for its first operand

Example:
x := 10 + k * 30

⇓

x 10 k 30 * + :=

 • Conditional statements

We need to introduce the unconditional jump, JUMP,
and the conditional jump, JEQZ, Jump if EQual to
Zero, and also we need to specify the jump location,
LABEL.

L1 LABEL (eller L1:)

<label> JUMP

<value> <label> JEQZ

(value = 0 ⇒ false, otherwise ⇒ true)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 151

Example 1:

IF <expr> THEN <statement1> ELSE
<statement2>

gives us

<expr> L1 JEQZ <statement1> L2 JUMP L1:

<statement2> L2:

where L1: stands for L1 LABEL

Example 2:

if a+b then
if c-d then

x := 10
else y := 20

else z := 30;

gives us

a b + L1 JEQZ
c d - L2 JEQZ

x 10 := L3 JUMP
L2: y 20 := L4 JUMP

L1: z 30 := L3: L4:

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 152

Remember that:

while <expr> do <stat>

gives us

L2: <expr> L1 JEQZ <stat> L2 JUMP L1:

Exercise:

Translate the repeat and for statements to postfix
notation.

Suitable data-structure

An array where label corresponds to index.

Elements:

• Operand

Pointer to the symbol table.

• Operator

A numeric code, for example, which does not
collide with the symbol table index.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 153

Abstract syntax trees

Correspond to a reduced variant of parse trees. A parse
tree contains redundant information, see the figure
below.

Example: Parse trees for a := b * c + d

+<expr>

 <assign>

:=<id> <expr>

a <term>

*<term>

<term>

<factor>

<id>

b

<factor>

<id>

c

<factor>

<id>

d

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 154

Abstract syntax tree for a := b * c + d :

Advantages and disadvantages of abstract syntax trees

+ Good to perform optimization on

+ Easy to traverse

+ Easy to evaluate, i.e. suitable for interpreting

+ unparsing (prettyprinting) possible via
inorder traversing

+ postorder traversing gives us postfix notation!

− Far from machine code

:=

a +

d*

cb

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 155

Implementation of AST

The tree is flattened, suitable for external storage.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 156

Three-address code

op: = +, -, *, /, :=, JEQZ, JUMP, []=, =[]

Quadruples

Form:

Example: Assignment statement A := B * C + D

 gives us the quadruples

T1 := B * C
T2 := T1 + D
A := T2

T1, T2 are temporary variables.

The contents of the table are references to the symbol
table.

op arg1 arg2 res

* B C T1

+ T1 D T2

:= T2 A

z := x op y
↑ ↑ ↑

addr1 addr2 addr3

op arg1 arg2 res

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 157

Control structures using quadruples

Example:

if a = b
then x := x + 1
else y := 20;

† The jump address was filled in later as we can not
know in advance the jump address during
generation of the quadruple in a pass.

We reach the addresses either during a later pass
or by using syntax-directed translation and filling in
when these are known.This is called
backpatching.

Quad-no op arg1 arg2 res

1 = a b T1

2 JEQZ T1 (6)†

3 + x 1 T2

4 := T2 x

5 JUMP (7)†

6 := 20 y

7

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 158

Procedure call

Example:f(a1, a2, ..., an)

Example: READ(X)

Example: WRITE(A*B, X+5)

 op arg1 arg2 res

param a1
param a2
... ...

param an
call f n

 op arg1 arg2 res

param X

call READ 1

 op arg1 arg2 res

* A B T1

+ X 5 T2

param T1

param T2

call WRITE 2

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 159

Array-reference

A[I] := B

[]= is called l-value, specifies the address to an
element. In l-value context we obtain storage
adress from the value of T1.

B := A[I]

=[] is called r-value, specifies the value of an
element

op arg1 arg2 res

[]= A I T1

:= B T1

op arg1 arg2 res

=[] A I T2

:= T2 B

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 160

Triples (also called two-address code)

Form:

Example: A := B * C + D

No temporary name!

Quadruples vs triples

Quadruples:

− Temporary variables take up space in the symbol
table.

+ Good control over temporary variables.

+ Easier to optimise and move code around.

Triples:

− Know nothing about temporary variables.

+ Take up less space.

− optimization by moving code around is
 difficult; in this case indirect triples are used.

op arg1 arg2
1 * B C

2 + (1) D

3 := A (2)

op arg1 arg2

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 161

Methods for syntax-directed translation

There are two methods:

1. Attribute grammars,’attributed translation grammars’

Describe the translation process using

a) CFG

b) a number of attributes that are attached to
terminal and nonterminal symbols, and

c) a number of semantic rules that are attached to
the rules in the grammar which calculate the
value of the attribute.

2. Translation scheme

Describe the translation process using

a) a CFG

b) a number of semantic operations (without
attributes)

A → XYZ {semantic operation}

Semantic operations are performed:

• when reduction occurs (bottom-up), or

• during expansion (top-down).

This method is a more procedural form of the
previous one (contains implementation details),
which explicitly show the evaluation order of
semantic rules.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 162

Example 1: Translation schema

Semantic analysis

Intuition: Attach semantic actions to syntactic rules to perform
semantic analysis and intermediate code generation.

The example below describes part of a CFG for variable
declarations in a small language. Assume that the source
language contains non-nested blocks.

The text in {} stands for a description of the semantic analysis
for book-keeping of information on symbols in the symbol
table.

<decls> → ...
<decl> → var <name-list> : <type-id>

{Attach the type of <type-id> to all id in <name-list>}
<name-list> → <name-list> , <name>

{Check that name in <name-list> is not duplicated, and
 check that name has not been declared previously}

<name-list> → <name>
{Check that name has not been declared previously}

<type-id>→ "ident"
 {Check in the symbol table for "ident", return its index

if it is already there, otherwise error: unknown type.}
<name>→ "ident"

 {Update the symbol table to contain an entry for
this "ident"}

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 163

Example 2: Translation schema

Intermediate code generation

Translation of infix notation to postfix notation in a
bottom-up environment.

Translation of the input string:

a + b * d

becomes in postfix:

a b d * +

See the parse tree on the next page:

Productions Semantic operations

1 E → E1 + T {print(’+’)}

2 | T

3 T → T1 * F {print(’*’)}

4 | F

5 F → (E)

6 | id {print(id)}

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 164

x specifies temporal order
of the reductions

E

1

2

3

4

5 6

7

8

E

T

F

id

a

r6

r4

r2

r1

+ T

r3

T

F

id

b

id

d

r4

r6

F

r6

a b d * +

*

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 165

Implementation in the LR case

The parser routine:

procedure parser;
begin

while not done do
begin

case action of
shift:

...
reduce:

call semantic(rule);
...

end (* case *);
end (* while *);

end (* parser *);

procedure semantic(rule);
begin

case rule of
1 : write(’+’);
3 : write(’*’);
6 : write(id);

end;
end;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 166

Attribute grammar

 • A way to extend a CFG.

 • Each nonterminal will have one or more attributes
(value fields).

 • A number of semantic rules which calculate the
values of the attributes using other attributes.

Attributes can be:

 • Inherited attributes which are transferred from left
to right in a production (and downwards in a parse
tree). Examples: type info, addresses for variables.

 • Synthesised attributes which are transferred from
right to left in a production (and upwards in a parse
tree). Examples: value of variables, translation to
internal form.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 167

Example 1: Attribute grammar

Semantic Analys

Example of a semantic tree for the string in+3*r
according to grammar E.

E → num

E → num . num

E → id

E → E1 op E2

E1 type:=integer

id

E type:=real

op E2 type:=real

E1 type:=integer op E2 type:=real
in

num id
r

+

3

*

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 168

A syntax-directed definition for type checking
expressions in the CFG above.

E → num {E.type := integer}

E → num . num {E.type := real}

E → id {E.type:= lookup-typ(id.entry)}

E → E1 op E2 { E.type := if (E1.type = integer)
and (E2.type = integer)

then integer
else if (E1.type = integer)

and (E2.type = real)
then real

else if (E1.type = real)
and (E2.type = integer)
then real

else if (E1.type = real)
and (E2.type = real)
then real

else error }

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 169

Example of a syntax-directed definition for type
conversion during intermediate code generation.
Details are shown as comments to make the example
readable.

E → E1 op E2
S → V := E

{ if V.type = E.type

then ... (* generate code directly according to type*)

else if (V.type = integer) and (E.type= real)

 then ... (* Semantic error: TYPE ERROR! *)

else if (V.type = real)
and (E.type= integer)

then ...(* Code generation with
 type conversion:

E.value:= ...;

V.value:= IntToReal(E.value)
*)

 }

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 170

Example 2: Attribute grammar

Intermediate code generation

Translating expressions in the language over G(E) to
reverse Polish notation.

Code is an attribute which is attached to all nonterminals
in the grammar.

There is a semantic rule for each grammar rule attached
to the left hand side, which calculates the value of the
attribute Code (the code produced) just for this
nonterminal.

Productions Semantic rules

E → E1 + T { E.Code:= E1.Code || T.Code || ’+’ }

 | E1 - T { E.Code:= E1.Code || T.Code || ’-’ }

 | T { E.Code:= T.Code }

T → ’0’ { T.Code := ’0’ }

 | ’1’ { T.Code := ’1’ }

 | ’9’ { T.Code := ’9’ }

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 171

Example 3: Attribute grammar

Calculator: Interpreting in a bottom-up environment

See the example below of a calculator, i.e. an interpreter
for arithmetic expressions, which caluclates the value of
an arithmetic expression, without generating any
intermediate code.

Each nonterminal has a synthesised attribut val.

Input: 25 + 4 * 3 =

Productions Semantic operations

1 S → E = { display(E.val) }

2 E → E1 + T { E.val := E1.val + T.val }

3 | T { E.val := T.val }

4 T → T1 * F { T.val := T1.val * F.val }

5 | F { T.val := F.val }

6 F → (E) { F.val := E.val }

7 | Int { F.val := Int.val }

8 Int → Int1 digit { Int.val := Int1.val*10 + lexval }

9 | digit { Int.val := lexval }

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 172

Input: 25 + 4 * 3 =

How can we make a program from this?

S display(37)

E 37 =

E 25 + T 12

T 25 T 4 * F 3

F 25 F 4 Int 3

Int 25 Int 4 digit 3

Int 2 digit 5 digit 4

digit 2

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 173

Observations:

 • Here all attributes are synthesised.

 • I rule no. 2, "+" denotes a symbol in the production
and the addition operation in the semantic rule.

 • lexval is the value of a number character which
returns from the scanner in the form:

<digit, lexval>

i.e. the number character is converted to a
corresponding integer in the scanner.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 174

Implementation in the LR case

To be able to propagate attributes we introduce a
semantic stack which grows in parallel with the parse
stack (same stack pointer is used).

When we are ready to perform a reduction the semantic
action will synthesise a new attribute whose value is a
function of the attributes belonging to the symbols of the
right side.

That is, if the production is

A → α

A:s attributes b are calculated by the formula

b := f(c1, c2, ..., ck)

where c1, c2, ..., ck are the attributes belonging to the
symbols in α.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 175

Example: when we are about to perform the reduction
E → E1 + T the stack pointer points to T:

We perform the semantic action

E.val := E1.val + T.val

with the statement

val[stkp-2]:= val[stkp-2]+ val[stkp];

Comments:

 • stkp denotes the stack pointer.
 • Its value in the semantic action above is before the

reduction.

Parse
stack

Semantic stack Position

T T.val 0

+ -1

E1 E1.val -2

...

stkp

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 176

 • After the call the LR parser will reduce stkp by the
length of the right side (here: 3).

 • It then puts E on the parse stack (because we
reduced with E := E1 + T) with the result that the
stack pointer increases a step and we get the
following configuration:

Parse
stack

Semantic stack

E E.val

... ...

stkp

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 177

procedure semantic(rule);

begin

case rule of

1: write(val[stkp-1]);

2: val[stkp-2]:= val[stkp-2]+val[stkp];

3: ;

4: val[stkp-2]:= val[stkp-2]*val[stkp];

5: ;

6: val[stkp-2]:= val[stkp-1];

7: ;

8: val[stkp-1]:= val[stkp-1]*10+lexval

9: val[stkp]:= lexval

end;

end;

(lexval is a global variable from the scanner)

NB!
 • stkp specifies the stack pointer before reducing.
 • The stack grows with higher addresses.
 • reduce pops with

stkp := stkp - |β|

at the reduction A → β

compare with
semantic actions on
page 171

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 178

Implementation in the case of recursive descent

 • Interpretation

When it is a matter of pure parsing we have a
procedure for each nonterminal. Add a parameter
for each attribute - this can be regarded as an
implicit stack.

 • Code generation

Write the translated code to a file.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 179

Example 4: Attribute grammar

Calculator: Interpreting in the recursive descent
case

Implementation: Add a parameter for each attribute.

procedure E(var e_val : integer);
var t_val : integer;
begin

T(t_val);
e_val := t_val;
while (token = ’+’) do
begin

scan;
T(t_val);
e_val := e_val + t_val;

end;
end;

Productions Semantic operations

0. S → E = {write(E.val)}

1. E → T1 {E.val := T1.val}

 { + T2 } {E.val := T1.val + T2.val}

2. T → F1 {T.val := F1.val}

 { * F2} {T.val := F1.val * F2.val}

3. F → (E) {F.val := E.val}

4 | integer {F.val := lexval}

Synthesised attributes become Var parameters
since they return Values.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 180

Syntax-directed generation of quadruples
for assignment statements and arithmetic

expressions

Bottom-up analysis

1. ass → var := E
2. E → E1 + T
3. | T
4. T → T1 * F
5. | F
6. F → (E)
7. | id
8. var → id

Attribute:

adr address / index in symbol table

Functions:

GEN(op,arg1,arg2,res) generates quadruple

GENTEMP() generates new temp-variable and
returns address to it

LOOKUP(id) returns the address to the identifier

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 181

1. ass → var := E
2. E → E1 + T
3. | T
4. T → T1 * F
5. | F
6. F → (E)
7. | id
8. var → id

Syntax-directed translation:

1. GEN(’:=’, E.adr, _ , var.adr);

2. temp := GENTEMP();
GEN(’+’, E1.adr, T.adr, temp);
E.adr := temp;

3. E.adr := T.adr;

4. temp := GENTEMP();
GEN(’*’, T1.adr, F.adr, temp);
T.adr := temp;

5. T.adr := F.adr;

6. F.adr := E.adr;

7. F.adr := LOOKUP(id);

8. var.adr := LOOKUP(id);

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 182

Example of generation of quadruples:

Generated quadruples for input: A := B * C + D

A

var

r81

:= B * C + D

 F

r72

 F

r74

 F

r77

adr(A) adr(B) adr(C) adr(D)

T

r53

adr(B)

T

r55

adr(T1)

E

r56

adr(T1)

T

r58

adr(D)

E

r29
adr(T2)

ass

r110

GEN

GEN

GEN

at GEN(’*’,adr(B),adr(C),adr(T1))
at GEN(’+’,adr(T1),adr(D),adr(T2)
at GEN(’:=’,adr(T2), _ ,adr(A))

5

9
10

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 183

Generating quadruples for typical control
structures (replaces sections 8.5 - 8.6 in the book)

IF-statement: IF <E> THEN <S>1 ELSE <S>2

Quadruples for the above statement generally appear
as:
in: quadruples for Temp := <E>
p: JEQF Temp q+1 Jump over <S>1 if <E> false

quadruples for <S>1
q: JUMP r Jump over <S>2

q+1:quadruples for <S>2
r: ...

To be able to put in the jumps we want, the grammar is
factorised to:

1.<if-stat> ::= <true-part> <S>2
 2.<true-part>::= <if-clause> <S>1 ELSE
 3.<if-clause>::= IF <E> THEN

Attributes:
ADDR = address to the symbol table for the result of <E>.
QUAD = quadruple number

Functions:
NEXTQUAD = produces next quadruple number.
GEN = creates and fills in a quadruple.

Datastructure:
Generated quadruples are stored in a matrix:
QUADR[1..N, 1..4] (of quads)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 184

Syntax directed translation scheme with attributes
"Attribute grammar" for translating the IF statement

3. <if-clause> ::= IF <E> THEN

{ <if-clause>.QUAD := NEXTQUAD;
Save the address to the next quadruple,
 i.e. the one that generates jump over <S>1.

GEN(JEQF, <E>.ADDR, 0, 0)
Jump to <S>2. Location q+1 not yet known!

}
2. <true-part> ::= <if-clause> <S>1 ELSE

{ <true-part>.QUAD := NEXTQUAD;
Save next quadruple number, i.e. the one
which generates jump over <S>2.

GEN(JUMP, 0, 0, 0);
Jump to next statement. Location r not yet known.

QUADR[<if-clause>.QUAD,3]:=NEXTQUAD}
Insert quadruple number given by (backpatch)

<if-clause>.QUAD at position q+1.
}

1. <if-stat> ::= <true-part> <S>2

{QUADR[<true-part>.QUAD,2]:=NEXTQUAD}
Done. Fix the jump to the next stmt, (backpatch)

 i.e. to location r in <true-part>.QUAD.
}

(A real attribute grammar does not have side effects such as GEN)

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 185

WHILE-statement: WHILE <E> DO <S>

Quadruples for the statement above generally appear as :

in: quadruples for Temp := <E>
p: JEQF Temp q+1 Jump over <S> if <E> false

quadruples for <S>
q: JUMP in Jump to the loop-predicate

q+1: ...

The grammar factorises on:

 1. <while-stat> ::= <while-clause> <S>
 2. <while-clause>::= <while> <E> DO
 3. <while> ::= WHILE

An extra attribute, NXTQ, must be introduced here. It has
the same meaning as QUAD in the previous example.

3. {<while>.QUAD ::= NEXTQUAD}
Rule to find start of <E>

2. {<while-clause>.QUAD := <while>.QUAD;
Move along start of <E>

<while-clause>.NXTQ := NEXTQUAD;
Save the address to the next quadruple.

GEN(JEQF, <E>.ADDR, 0, 0)
Jump position not yet known! }

1. {GEN(JUMP, <while-clause>.QUAD,0,0);
Loop, i.e. jump to beginning <E>

QUADR[<while-clause>.NXTQ,3]:=NEXTQUAD
(backpatch) Position to the end of <S> }

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture 5-6 Autumn 99

Lecture 5-6 Semantic analysis and intermed. form Page 186

Exercise:

Show how quadruples can be generated for the
REPEAT-UNTIL statement.

