
Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 62

Symbol tables

Gather information about names which are in a
program.

 • A symbol table is a data structure, where
information about program objects is gathered.

 • Is used in both the analysis and synthesis phases.

 • The symbol table is built up during the lexical and
syntactic analysis.

 • Help for other phases during compilation:

• Semantic analysis: type conflict?

• Code generation: how much and what type of
run-time space is to be allocated?

• Error handling: Has the error message

"Variable A undefined"

already been issued?

 • symbol table phase or symbol table management
refer to the symbol table’s storage structure, its
construction in the analysis phase and its use
during the whole compilation.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 63

Requirements for symbol table management

 • quick insertion of an identifier

 • quick search for an identifier

 • efficient insertion of information (attributes) about
an id

 • quick access to information about a certain id

 • Space- and time- efficiency

Important concepts

 • Identifiers, names

 • L-values, L-values and r-values, r-values

 • Environments and bindings

 • Operators and various notations

 • Lexical- and dynamic- scope

 • Block structures

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 64

Identifiers — Names

 • An identifier is a string, e.g. ABC.

 • A name denotes a space in memory, i.e. it has a
value and various attributes, e.g. type, scope.

Example:

 • A name can be denoted by several identifiers, so-
called aliasing.

procedure A;
var x : ...;

procedure B;
var x : ...;

same identifier x but
different names

{(x,C1),(y,C1),...}
15

address: C1
x

y

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 65

L-value and R-value

There is a difference between what is meant by the right
and the left side of an assignment.

Example

Certain expression have l- or r-value, while some have
both l-value and r-value.

Expres-
sion

has l-value has r-value

i+1 n j

b^ j j

a j j

a[i] j j

2 n j

i := i + 1;

L-value R-value

a := b * c;

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 66

Operators and different notations

 • Unary operators have one operand, e.g. -x

 • Binary operators have two operands, x + y

 • Ternary operators have three operands,
if villkor1 then sats2 else sats3

Operators are denoted with the help of different
notations:

 • Prefix notation, -x, sort(a,b,c)

 • Infix notation, x + y

 • Postfix notation, x!

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 67

Binding: <names, attributes>

 • names

Come from the lexical analysis.

 • attributes

Come from the syntactic analysis, semantic
analysis and code generation phase.

Binding is associating an attribute with a name, e.g.:

Static and dynamic concepts:

Static concepts Dynamic counterpart

Definition of a subprogram Call by a subprogram

Declaration of a name Binding of a name

Scope of a declaration Lifetime of binding

procedure foo;
var k: char; { Bind k to char }

procedure fie;
var k: integer; { Bind k to integer }

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 68

Environments and bindings

 • Different environments are created during
execution, e.g. when calling a subprogram

 • An environment consists of a number of name
bindings

 • Distinguish between environment and state,
e.g. the assignment A := B;
changes the current state, but not the environment.

Example
Env = {(x,C1),(y,C2),(z,C3),...}
State = {(C1,3),(C2,5),(C3,9),...}

In the environment Env, binds x to memory cell C1,...
and memory cell C1 has the value 3, ...

 • A name is bound to a memory cell, storage location,
which can contain a value.

 • A name can have several different bindings in
different environments, e.g. if a procedure calls
itself recursively.

name memory value

environment state

Env: name → memory State: memory → value

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 69

Lexical- and dynamic- scope

How do we find the object which is referenced by non-
local names?

Two different methods are used:

1. Lexical- or static- scope

The object is determined by investigating the
program text, statically.

Is used in the languages Pascal, Algol, C.

2. Dynamic scope

The object is determined during run-time by
investigating the current call chain.

Is used in the languages LISP, APL.

Example: Dynamic-scope

Which x is referenced in the assignment statement
p3?
It depends on whether p3 is called from p1 or p2.

var x;
...

p3;
...

p1 var x;
...

p3;
...

p2

...
y:= x;
...

p3

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 70

Which x is referenced in procedure fie in the program
below if

a) static scoping applies?

b) dynamic scoping applies?

program foo;
var x ;

procedure fie(...);
var y;
begin

y:= x; (* which x ? *)
end;

procedure fum(...);
var x ;
begin

x:= 5;
 fie(...);
end;

begin
x:= 10;
fum(...);

end.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 71

Block structures

 • Algol, Pascal, Simula, Ada are typical block-
structured languages.

 • Blocks can be nested but may not overlap

 • Static scoping applies for these languages:

a) A name is visible (available) in the block the
name is declared in.

b) If block B2 is nested in B1, then a name
available in B1 is also available in B2 if the name
has not been re-defined in B2.

B1

B2

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 72

Static and dynamic characteristics in
language constructions

Static characteristics

Characteristics which are determined during
compilation.

Example

• A Pascal-variable type

• Name of a Pascal procedure

• Scope of variables in Pascal

• Dimension of a Pascal-array

• The value of a Pascal constant

• Memory assignment for an integer variable in
Pascal

Dynamic characteristics

Characteristics that can not be determined during
compilation, but can only be determined during run-
time.

Example

• The value of a Pascal variable

• Memory assignment for dynamic variables in
Pascal (accessible via pointer variables)

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 73

Advantages and disadvantages

Static

- Reduced freedom for the programmer

+ Allows type checking during compilation

+ Compilation is easier

+ More efficient execution

Dynamic

- Less efficient execution because of dynamic type
checking

+ Allows more flexible language constructions
(e.g. dynamic arrays)

More about this will be included in the lecture on
memory management.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 74

Symbol table design (decision that must be
made)

1. Structuring of various types of information
(attributes) for each name:

a) string space for names

b) information for procedures, variables, arrays, ...

c) access functions (operations) on the symbol
table

d) scope, for block-structured languages.

2. Choosing data structures for the symbol table which
enable efficient storage and retrieval of information.
Three different data structures will be examined:

a) Linear lists

b) Trees

c) Hash tables

Design choices:

 • One or more tables

 • Direct information or pointers (or indexes)

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 75

Structuring problems

When a name is declared, the symbol table is filled with
various bits of information about the name:

Normally the symbol table index is used instead of the
actual name. For example, the parse tree for the
statement

done := true

 • This is both time- and space-efficient.
 • How can the string which represents the name be

stored?

Here come two different ways.

0

...

...

m done id Boolean

...

n

<assignment>

m <assop> true
(or index for ":=")

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 76

String space for names

Method 1: Fixed space of max expected characters

FORTRAN: 6 characters, Hedrick Pascal: 10characters

Method 2: <length, pointer> (Sun Pascal: 1024
characters)

Alt. without specifying length: ...$KALLE$SUM$...
where $ denotes end of string.

The name and information must remain in the symbol
table as long as a reference can occur.
For block-structured languages the space can be re-
used.

KALLE attributes

SUM attributes

... ...

length pointer

5 attribute

3 attribute

...|KALLE|SUM|...

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 77

Information in the symbol table

 • name

 • attribute

• type (integer, boolean, array, procedure, ...)

• length, precision, packing density

• address (block, offset)

• declared or not, used or not

•

•

You can directly allocate space in the symbol table for
attributes whose size is known, e.g. type and value of a
simple variable:

How do you store information about an array in the
symbol table?

int value

...i...

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 78

Information in the symbol table for arrays

• Fixed allocation (BASIC, FORTRAN)

• The number of dimensions is known at
compilation.

• FORTRAN4: max 3 dimensions, integer index.

KAL
Array
L1
L2
L3
INT

LE
3
U1
U2
U3

EGER

Fixed in advance

Dim. limits
lower/upper bound

Element type

}

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 79

• Flexible allocation (Pascal, Simula, ADA)

Pascal: Arbitrary number of dimensions, elements of
arbitrary type.

var v: array[1..20,’a’..’z’] of integer;

You can access an element v[i,j] in the above array
by calculating its address:

adr = BAS + k*((i-1)*r)+j-1)

where r= number of elements/rows,
and k= number of memory cells/elements

(bytes, words)

...

 v ...

...

...

array-
type

1 20 integer

array-
type

’a’ ’z’ char

integer

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 80

Access functions (operations) on symboltab

 • is(x)

Determine whether x is in the symbol table.

 • enter(x)

Insert x in the symbol table.

lookup(x) = is(x) + enter(x)

 • put(x, attr, value)

Insert value as the value of the attribute attr for
the name x

 • get(x, attr)

Return the value of the attribute attr for x

 • delete(x)

Remove x and all information about x from the
table.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 81

Data structures for symbol tables

 • Linear lists

 • Trees

 • Hash tables

Keep in mind:

 • Search for a name

 • Insert a name

 • Scoping (removing info about a scope)

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 82

Linear lists

Search
Search linearly from beginning to end. Stop if found.

Adding
Search (does it exist?). Add at beginning if not
found.

Effectivity
To insert n names and search for m names the cost
will be cn(n+m) comparisons.
Inefficient.

Positive

 • Easy to implement

 • Uses little space

 • Easy to represent scoping.

Negative

 • Slow for large n and m.

Name Info Name Info Name Info

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 83

Trees

You can have the symbol table in the form of trees as
below:

 • Each subprogram has a symbol table associated to
its node in the abstract syntax tree.

 • The main program has a similar table for globally
declared objects.

 • Quicker that linear lists.

 • Easy to represent scoping.

Symboltab

Node for program P

P Node for declarations
within P

Main routine

Node for proc P1 Node for proc P2

Symboltab Symboltab

P1 decls body P2 decls body

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 84

 Hash tables (with chaining)

ruderal
write

integer

prig

level

|i|n|t|e|g|e|r| |r|e|a|l| |r|e|a|d| |w|r|i|t|e| |p|r|o|g| | |

sympos

Symbol tableHash table Block table

Index to
stringtab.

Other
info. Hash link

 String table

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 85

Hash tables (with chaining)

Search
Hash the name in a hash function,

h(symbol) ∈ [0, k-1]

where k = table size

If the entry is occupied, follow the link field.

Insertion
Search + simple insertion at the end of the symbol
table (use the sympos pointer).

Efficiency
Search proportional to n/k and the number of
comparisons is (m + n) n / k for n insertions and
m searches.

k can be chosen arbitrarily large.

Positive

 • Very quick search

Negative

 • Relatively complicated

 • Extra space required, k words for the hash table.

 • More difficult to introduce scoping.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 86

Example of symbol table with hashing

program prog;

var a, b, c : integer;

procedure p1;

var b, c : real;

procedure p2; (1)

var c : real; (2)
begin

c := b + a;

 (3) (4) (5)

end; (6)

begin

c := b + a;

end;

begin

 ...

end.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 87

1. Declaring x

• Search along the chain for x’s hash value.

• When a name (any name) in another block is
found, x is not double-defined.

• Insert x at the beginning of the hash chain.

2. Referencing x

• Search along the chain for x’s hash value.

• The first x to be found is the right one.

• If x is not found, x is undefined.

3. A new block is started

• Insert block pointer in BLOCKTAB.

4. End of the block

• Move the block down in BLOCKTAB.

• Move the block down in SYMTAB.

• Move the hash pointer to point at the previous
block.

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 88

prog

p1

b

a,c

Symb

prog

a

b

c

p1

b

c

Block Info Hash link

Block 1

Block 2

1

1

1

1

1

2

2

NB. a and c have the same hash value

Symbol tableHash table Block table

level

