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Symbol tables

Gather information about names which are in a
program.

 • A symbol table is a data structure, where
information about program objects is gathered.

 • Is used in both the analysis and synthesis phases.

 • The symbol table is built up during the lexical and
syntactic analysis.

 • Help for other phases during compilation:

• Semantic analysis: type conflict?

• Code generation: how much and what type of
run-time space is to be allocated?

• Error handling: Has the error message

"Variable A undefined"

already been issued?

 • symbol table phase or symbol table management
refer to the symbol table’s storage structure, its
construction in the analysis phase and its use
during the whole compilation.
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Requirements for symbol table management

 • quick insertion of an identifier

 • quick search for an identifier

 • efficient insertion of information (attributes) about
an id

 • quick access to information about a certain id

 • Space- and time- efficiency

Important concepts

 • Identifiers, names

 • L-values, L-values and r-values, r-values

 • Environments and bindings

 • Operators and various notations

 • Lexical- and dynamic- scope

 • Block structures
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Identifiers — Names

 • An identifier is a string, e.g. ABC.

 • A name denotes a space in memory, i.e. it has a
value and various attributes, e.g. type, scope.

Example:

 • A name can be denoted by several identifiers, so-
called aliasing.

procedure A;
var x : ...;

procedure B;
var x : ...;

same identifier x but
different names

{(x,C1),(y,C1),...}
15

address: C1
x

y
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L-value and R-value

There is a difference between what is meant by the right
and the left side of an assignment.

Example

Certain expression have l- or r-value, while some have
both l-value and r-value.

Expres-
sion

has l-value has r-value

i+1 n j

b^ j j

a j j

a[i] j j

2 n j

i := i + 1;

L-value R-value

a := b * c;
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Operators and different notations

 • Unary operators have one operand, e.g.  -x

 • Binary operators have two operands, x + y

 • Ternary operators have three operands,
if villkor1 then sats2 else sats3

Operators are denoted with the help of different
notations:

 • Prefix notation, -x, sort(a,b,c)

 • Infix notation,  x + y

 • Postfix notation, x!

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 67

Binding: <names, attributes>

 • names

Come from the lexical analysis.

 • attributes

Come from the syntactic analysis, semantic
analysis and code generation phase.

Binding is associating an attribute with a name, e.g.:

Static and dynamic concepts:

Static concepts Dynamic counterpart

Definition of a subprogram Call by a subprogram

Declaration of a name Binding of a name

Scope of a declaration Lifetime of binding

procedure foo;
var k: char;  { Bind k to char }

procedure fie;
var k: integer;  { Bind k to integer }
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Environments and bindings

 • Different environments are created during
execution, e.g. when calling a subprogram

 • An environment consists of a number of name
bindings

 • Distinguish between environment and state,
e.g. the assignment A := B;
changes the current state, but not the environment.

Example
Env = {(x,C1),(y,C2),(z,C3),...}
State = {(C1,3),(C2,5),(C3,9),...}

In the environment Env, binds x to memory cell C1,...
and memory cell C1 has the value 3, ...

 • A name is bound to a memory cell, storage location,
which can contain a value.

 • A name can have several different bindings in
different environments, e.g. if a procedure calls
itself recursively.

name memory value

environment state

Env: name →  memory State: memory  →  value

Linköping University
Dept.Computer and Information Science COMPILER CONSTRUCTION Lecture-2 Autumn-99

Lecture 2 Symbol tables Page 69

Lexical- and dynamic- scope

How do we find the object which is referenced by non-
local names?

Two different methods are used:

1. Lexical- or static- scope

The object is determined by investigating the
program text, statically.

Is used in the languages Pascal, Algol, C.

2. Dynamic scope

The object is determined during run-time by
investigating the current call chain.

Is used in the languages LISP, APL.

Example:  Dynamic-scope

Which x is referenced in the assignment statement
p3?
It depends on whether p3 is called from p1 or p2.

var x;
...

p3;
...

p1 var x;
...

p3;
...

p2

...
y:= x;
...

p3
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Which x is referenced in procedure fie in the program
below if

a) static scoping applies?

b) dynamic scoping applies?

program foo;
var x ;

procedure fie(...);
var y;
begin

y:= x; (* which x ? *)
end;

procedure fum(...);
var x ;
begin

x:= 5;
  fie(...);
end;

begin
x:= 10;
fum(...);

end.
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Block structures

 • Algol, Pascal, Simula, Ada are typical block-
structured languages.

 • Blocks can be nested but may not overlap

 • Static scoping applies for these languages:

a) A name is visible (available) in the block the
name is declared in.

b) If block B2 is nested in B1, then a name
available in B1 is also available in B2 if the name
has not been re-defined in B2.

B1

B2
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Static and dynamic characteristics in
language constructions

Static characteristics

Characteristics which are determined during
compilation.

Example

• A Pascal-variable type

• Name of a Pascal procedure

• Scope of variables in Pascal

• Dimension of a Pascal-array

• The value of a Pascal constant

• Memory assignment for an integer variable in
Pascal

Dynamic characteristics

Characteristics that can not be determined during
compilation, but can only be determined during run-
time.

Example

• The value of a Pascal variable

• Memory assignment for dynamic variables in
Pascal (accessible via pointer variables)
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Advantages and disadvantages

Static

- Reduced freedom for the programmer

+ Allows type checking during compilation

+ Compilation is easier

+ More efficient execution

Dynamic

- Less efficient execution because of dynamic type
checking

+ Allows more flexible language constructions
(e.g. dynamic arrays)

More about this will be included in the lecture on
memory management.
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Symbol table design (decision that must be
made)

1. Structuring of various types of information
(attributes) for each name:

a) string space for names

b) information for procedures, variables, arrays, ...

c) access functions (operations) on the symbol
table

d) scope, for block-structured languages.

2. Choosing data structures for the symbol table which
enable efficient storage and retrieval of information.
Three different data structures will be examined:

a) Linear lists

b) Trees

c) Hash tables

Design choices:

 • One or more tables

 • Direct information or pointers (or indexes)
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Structuring problems

When a name is declared, the symbol table is filled with
various bits of information about the name:

Normally the symbol table index is used instead of the
actual name. For example, the parse tree for the
statement

done := true

 • This is both time- and space-efficient.
 • How can the string which represents the name be

stored?

Here come two different ways.

0 ... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

m done id Boolean ... ...

... ... ... ... ...

n ... ... ... ... ...

<assignment>

m <assop> true
(or index for ":=")
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String space for names

Method 1: Fixed space of max expected characters

FORTRAN: 6 characters, Hedrick Pascal: 10characters

Method 2:  <length, pointer>  (Sun Pascal: 1024
characters)

Alt. without specifying length: ...$KALLE$SUM$...
where $ denotes end of string.

The name and information must remain in the symbol
table as long as a reference can occur.
For block-structured languages the space can be re-
used.

KALLE attributes

SUM attributes

... ...

length pointer   ....

5  attribute

3 attribute

...|KALLE|SUM|...
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Information in the symbol table

 • name

 • attribute

• type (integer, boolean, array, procedure, ...)

• length, precision, packing density

• address (block, offset)

• declared or not, used or not

•

•

You can directly allocate space in the symbol table for
attributes whose size is known, e.g. type and value of a
simple variable:

How do you store information about an array in the
symbol table?

int value ... ...

...$i$...
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Information in the symbol table for arrays

• Fixed allocation (BASIC, FORTRAN)

• The number of dimensions is known at
compilation.

• FORTRAN4:  max 3 dimensions, integer index.

KAL
Array
L1
L2
L3
INT

LE
3
U1
U2
U3

EGER

Fixed in advance

Dim. limits
lower/upper bound

Element type

}
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• Flexible allocation (Pascal, Simula, ADA)

Pascal: Arbitrary number of dimensions, elements of
arbitrary type.

var v: array[1..20,’a’..’z’] of integer;

You can access an element v[i,j] in the above array
by calculating its address:

adr = BAS + k*((i-1)*r)+j-1)

where r= number of elements/rows,
and k= number of memory cells/elements

(bytes,   words)

...

 v ...

...

...

array-
type

1 20 integer

array-
type

’a’ ’z’  char

integer
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Access functions (operations) on symboltab

 • is(x)

Determine whether x is in the symbol table.

 • enter(x)

Insert x in the symbol table.

lookup(x) = is(x) + enter(x)

 • put(x, attr, value)

Insert value as the value of the attribute attr for
the name x

 • get(x, attr)

Return the value of the attribute attr for x

 • delete(x)

Remove x and all information about x from the
table.
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Data structures for symbol tables

 • Linear lists

 • Trees

 • Hash tables

Keep in mind:

 • Search for a name

 • Insert a name

 • Scoping (removing info about a scope)
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Linear lists

Search
Search linearly from beginning to end. Stop if found.

Adding
Search (does it exist?). Add at beginning if not
found.

Effectivity
To insert n names and search for m names the cost
will be cn(n+m) comparisons.
Inefficient.

Positive

 • Easy to implement

 • Uses little space

 • Easy to represent scoping.

Negative

 • Slow for large n and m.

Name Info Name Info Name Info
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Trees

You can have the symbol table in the form of trees as
below:

 • Each subprogram has a symbol table associated to
its node in the abstract syntax tree.

 • The main program has a similar table for globally
declared objects.

 • Quicker that linear lists.

 • Easy to represent scoping.

Symboltab

Node for program P

P Node for declarations
within P

Main routine

Node for proc P1 Node for proc P2

Symboltab Symboltab

P1 decls body P2 decls body
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 Hash tables (with chaining)

  ...  ...

ruderal
write

integer

prig

level

|i|n|t|e|g|e|r| |r|e|a|l| |r|e|a|d| |w|r|i|t|e| |p|r|o|g| | |

sympos

Symbol tableHash table Block table

Index to
stringtab.

Other
info. Hash link

                          String table
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Hash tables (with chaining)

Search
Hash the name in a hash function,

h(symbol) ∈ [0, k-1]

where  k = table size

If the entry is occupied, follow the link field.

Insertion
Search + simple insertion at the end of the symbol
table (use the sympos pointer).

Efficiency
Search proportional to n/k and the number of
comparisons is (m + n) n / k for n insertions and
m searches.

k can be chosen arbitrarily large.

Positive

 • Very quick search

Negative

 • Relatively complicated

 • Extra space required, k words for the hash table.

 • More difficult to introduce scoping.
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Example of symbol table with hashing

program prog;

var a, b, c : integer;

procedure p1;

var b, c : real;

procedure p2; (1)

var  c : real; (2)
begin

c := b + a;

  (3)  (4) (5)

end; (6)

begin

c := b + a;

end;

begin

   ...

end.
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1. Declaring x

• Search along the chain for x’s hash value.

• When a name (any name) in another block is
found, x is not double-defined.

• Insert x at the beginning of the hash chain.

2. Referencing x

• Search along the chain for x’s hash value.

• The first x to be found is the right one.

• If x is not found, x is undefined.

3. A new block is started

• Insert block pointer in BLOCKTAB.

4. End of the block

• Move the block down in BLOCKTAB.

• Move the block down in SYMTAB.

• Move the hash pointer to point at the previous
block.
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prog

p1

b

a,c

Symb

prog

a

b

c

p1

b

c

Block Info Hash link

Block 1

Block 2

1

1

1

1

1

2

2

NB.  a and c have the same hash value

Symbol tableHash table Block table

level


