
Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 3

Introduction

Translators

Compiler

High-level language → machine language or assembly
language

e.g. Pascal, Ada, Fortran

Three phases of execution:

"Compile time"

1. Source program → object program (compiling)

2. Linking, loading → absolute program

"Run-time"

3. Input → output

translator
Program in a

representation
language

Program in
another represen-
tation language

error messages

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 4

Interpreters

High-level language → intermediate code – which is
interpreted

e.g.

• BASIC, LISP, APL
• command languages, e.g. UNIX-shell
• query languages for databases

Assembler

Symbolic machine code → machine code

e.g. MOVE R1,SUM → 01..101

Interpreter

Input

Result

Source
program

does not translate,
interprets directly

error messages

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 5

Simulator, Emulator

Machine code is interpreted → machine code

e.g. Simulate a processor on an existing processor.

Preprocessor

Extended ("sugared") high-level language → high-level
language

 • Example1: IF–THEN–ELSE in FORTRAN:

Before preprocessing:
IF A < B THEN

Z=A
ELSE

Z=B

After preprocessing:
IF (A.LT.B) THEN GOTO 99
Z=B
GOTO 100

99 Z=A
100 CONTINUE

 • Example 2: "File inclusion"

#include "fil1.h"

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 6

Natural language – translators

e.g. Chinese → English

Very difficult problem, especially to include context.

Visiting relatives can be hard work.

- To go and visit relatives . . .

- Relatives who are visiting . . .

I saw a man with a telescope



Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 7

Why high-level languages?

 • Understandability (readability)

 • Naturalness (languages for different applications)

 • Portability (machine-independent)

 • Efficient to use (development time) due to

• separation of data and instructions
• typing
• data-structures
• blocks
• program-flow primitives
• subroutines

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 8

The structure of the compiler

Logical organisation

Analysis ("front-end"):

Pull apart the text string (the program) to internal
structures, reveal the structure and meaning of the
source program.

Synthesis ("back-end"):

Construct an object program using information from
the analysis.

Object
program

Source
program

 Analysis  Synthesis
 intermediate

 program

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 9

The phases of the compiler

Lexical
analysis

Semantic
 analysis and
intermediate

code

Syntactic
analysis

Code

Code
generation

Error
management

Table
management

Source program

sequence of chars:
’IF sum=5 THEN..’

machine code/assembly code

Object program

sequence of tokens
: ’IF’ ’sum’ ’=’ ’5’ ...

parse tree, derivation tree

 internal form

internal form, intermediate code

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 10

Pass:

Physical organisation (phase to phase) dependent
on language and compromises.

Available memory space, efficiency (time taken),
forward references, portability- and modularity-
requirements determine the number of passes.

The number of passes

The number of times the program is written in a file
(or is read from a file).

Several phases can be gathered together in one
pass.



Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 11

Lexical analysis (scanner)

Input:

Sequence of characters

Output:

Tokens (basic symbols, groups of successive
characters which belong together logically).

1. In the source text isolate and classify the basic
elements that form the language:

2. Construct tables (symbol table, constant table,
string table etc.).

Token Example

Identifiers SUM, A
Constants 556, 1.5E-5
Strings ’Provide a number’
Keywords, reserved words WHILE, IF
Operators + - * /
Others . ; ^ ,

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 12

3. Distinguish homonyms.

Homonyms:
Words that are pronounced and/or are written
alike but which have different meanings.

• feet, feat; spoke (of a wheel), spoke (talked)

• coach: football coach, journey by coach

Example1: FORTRAN:

DO 10 I=1,15 is a loop, but
DO 10 I=1.15 is an assignment.

NB! Blanks have no meaning in FORTRAN.

Example 2: Pascal

VAR i: 15..25;

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 13

The scanner returns values in the form

<type, value>

Example: IF sum < 15 THEN z := 153

< 5, 0 > 5 = IF, 0 = lacks value
< 7, 14 > 7 = code for identifier,

14 = entry to symbol table
< 9, 1 > 9 = relational operator, 1 = ‘<’
< 1, 15> 1 = code for constant, 15 = value
< 2, 0 > 2 = THEN, 0 = lacks value
< 7, 9 > 7 = code for identifier,

9 = entry to symbol table
< 3, 0 > 3 = ‘:=’, 0 = lacks value
< 1, 153 > 1 = code for constant, 153 = value

Regular expressions are used to describe tokens.

Symbol table

9  z

14 sum

Index

.

.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 14

Syntax analysis (parsing)

Input:

Sequence of tokens

Output:

Parse tree, error messages

Function:

1. Determine whether the input sequence forms a
structure which is legal according to the definition of
the language.

Example1: OK.

’IF’ ’X’ ’=’ ’1’ ’THEN’ ’X’ ’:=’ ’1’

Example 2: Not OK.

’IFF’ ’X’ ’=’ ’1’ ’THEN’ ’X’ ’:=’ ’1’

which produces the sequence of tokens:
< 7, 23 >
< 7, 16 > {Two identifiers inarow → wrong! }
< 9, 0 >
...



Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 15

2. Group tokens into syntactic units and construct
parse trees which exhibit the structure.

Example: A/B*C

represents  A/(B*C)

i.e. right-associative (is this desirable?)

The syntax of a language is described using a
context-free grammar.

<exp>

<exp> <exp>/

<id>
A

*<id>
B

<id>
C

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 16

Semantic analysis and intermediate code
generation

Input:

Parse tree + symbol table

Output:

intermediate code + symbol table temp.variables,

information on their type ...

Function:

1. Semantic analysis checks items which a grammar
can not describe:

• type compatibility  a := i * 1.5
• correct number and type of parameters in calls

to procedures as specified in the procedure
declaration.

2. Generate intermediate code.

Example: A + B * C in the form of a parse tree

Produces in reverse Polish notation:
A B C * +

Or three-address code:
T1 := B * C

T2 := A + T1

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 17

Or abstract syntax tree:

The intermediate form is used because it is:

1. Simpler than the high-level language (fewer and
simpler operations).

2. Not profiled for a given machine (portability).
3. Suitable for optimisation.

Syntax-directed translation schemes are used to attach
semantic routines (rules) to syntactic constructions.

+

A *

B C

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 18

Code optimisation (more appropriately: ‘‘Code
improvement’’)

Input:

Internal form

Output:

Internal form, hopefully improved.

Machine-independent code optimisation:

In some way make the machine code faster or more
compact by transforming the internal form.

Example: Eliminating common sub-expressions

Example: Code with no effect!?  (two assignments to
the same variable)

A:=B*C*D+4; ← removed (or error message)A:=5*K;
← logical error perhaps?

 Stepwise improvement

A:=B+C*I T1:=C*I T1:=C*I
D:=C*I+E T2:=B+T1 A:=B+T1

A:=T2 D:=T1+E
T3:=C*I
T4:=T3+E
D:=T4



Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 19

Code generation

Input:

Internal form

Output:

Machine code/assembly code

Function:

1. Register allocation and machine code generation
(or assembly code).

2. Instruction scheduling (specially important for
RISC)

3. Machine-dependent code optimisation
(so-called ‘‘peephole optimisation’’).

Example: Z := A+B*C    is translated to:

MOVE  1, B

IMUL  1, C

ADD   1, A

MOVEM 1, Z

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 20

Table management

Updating and search in tables

 • Symbol table (for identifiers)

 • String table

 • Constant table

Help for other phases during compilation.

Linköping University
Dept. Computer and Information Science COMPILER CONSTRUCTION    Lecture-1 Autumn 99

Lecture 1 Compilers, Introduction Page 21

Error management

1. Discover an error.
2. Write an error message.
3. Correct the error (or guess, very difficult!)
4. Restart from the error (try to continue).

Examples of error messages:

 • Lexical analysis:

Faulty sequence of characters which does not
result in a token, e.g.

Ö, 5EL, %K, ’string

 • Syntax analysis:

Syntax error (e.g. missing semicolon).

 • Semantic analysis:

Type conflict, e.g. ’HEJ’+5

 • Code optimisation:

Uninitialised variables, anomaly detection.

 • Code generation:

Too large integers, run out of memory.

 • Table management:

Double declaration, table overflow.


