Linképing University

Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Linkdping Universit

y
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Introduction

Translators

Program in a Program in
representation —»| translator ——» another represen-
language tation language

l

error messages
Compiler
High-level language — machine language or assembly

language
e.g. Pascal, Ada, Fortran

Three phases of execution:

"Compile time"
1. Source program — object program (compiling)

2. Linking, loading — absolute program
"Run-time"
3. Input — output

Interpreters

High-level language — intermediate code — which is
interpreted

e.g.
* BASIC, LISP, APL
« command languages, e.g. UNIX-shell
« query languages for databases

Input
Source) Interpreter
program — error messages
l does not translate,
interprets directly
Result
Assembler

Symbolic machine code — machine code

e.g. MOVE R1,SUM — 01..101

Lecture 1 Compilers, Introduction Page 3

Linképing University

Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture-1 Autumn 99

Simulator, Emulator
Machine code is interpreted — machine code

e.g. Simulate a processor on an existing processor.

Preprocessor

Extended ("sugared") high-level language — high-level
language

* Examplel: IF-THEN-ELSE in FORTRAN:

Before preprocessing:
IF A < B THEN

ELSE

After preprocessing:
IF (A.LT.B) THEN GOTO 99

Z=B

GOTO 100
99 Z=A
100 CONTINUE

» Example 2: "File inclusion"
#include "fill.h"

Lecture 1 Compilers, Introduction Page 5

Lecture 1 Compilers, Introduction Page 4

Linkoping University

Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Natural language — translators
e.g. Chinese — English

Very difficult problem, especially to include context.

Visiting relatives can be hard work.
- To go and visit relatives . . .
- Relatives who are visiting . . .

| saw a man with a telescope

Lecture 1 Compilers, Introduction Page 6

Linképing University Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99 Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99
Why high-level languages? The structure of the Compller

» Understandability (readability)
* Naturalness (languages for different applications)
» Portability (machine-independent)

« Efficient to use (development time) due to

Source i i i . Object
« separation of data and instructions program| """ Hlnt:rg?:;ﬁte*’ Synthesis stirEm
e typing
¢ data-structures
e blocks

« program-flow primitives
« subroutines

Logical organisation

Analysis (“front-end"):

Pull apart the text string (the program) to internal
structures, reveal the structure and meaning of the
source program.

Synthesis ("back-end"):
Construct an object program using information from

the analysis.
Lecture 1 Compilers, Introduction Page 7 Lecture 1 Compilers, Introduction Page 8
Linképing University Linkoping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture-1 Autumn 99 Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99
The phases of the compiler Pass:
Source program Physical organisation (phase to phase) dependent
¢ sequence of chars: on language and compromises.
'IF sum=5 THEN..’
Lexical Available memory space, efficiency (time taken),
analysis ™ R
forward references, portability- and modularity-
sequence of tokens requirements determine the number of passes.
VIF 'sum’ =5 L
Syntactic
analysis The number of passes
parse tree, detivation tree The number of times the program is written in a file
NN (or is read from a file).
Semantic
Table — | analysisand | —— Error .
management imer?/nediate management Several phases can be gathered together in one
code pass.

i internal form, intermediate code

e | /

l internal form

Code /

generation

machine code/assembly code

Object program

Lecture 1 Compilers, Introduction Page 9 Lecture 1 Compilers, Introduction Page 10

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Lexical analysis (scanner)
Input:
Sequence of characters
Output:
Tokens (basic symbols, groups of successive

characters which belong together logically).

1. Inthe source text isolate and classify the basic
elements that form the language:

Token Example
Identifiers SUM, A
Constants 556, 1.5E-5
Strings 'Provide a number’
Keywords, reserved words WHILE, IF
Operators + - * /
Others P

2. Construct tables (symbol table, constant table,
string table etc.).

Lecture 1 Compilers, Introduction Page 11

Linképing University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture-1 Autumn 99

The scanner returns values in the form
<type, value>

Example: IF sum < 15 THEN z := 153

<5 0> 5 =IF, 0 = lacks value

<7,14> 7 = code for identifier,
14 = entry to symbol table

<9,1> 9 = relational operator, 1 = ‘<’
<1, 15> 1 = code for constant, 15 = value
<2,0> 2 = THEN, 0 = lacks value

<7,9> 7 = code for identifier,
9 = entry to symbol table

<3,0> 3="=", 0 =lacks value
< 1,153 > 1 =code for constant, 153 = value

Index Symbol table
9 z
14 sum

Regular expressions are used to describe tokens.

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

3. Distinguish homonyms.
Homonyms:

Words that are pronounced and/or are written
alike but which have different meanings.

« feet, feat; spoke (of a wheel), spoke (talked)
« coach: football coach, journey by coach

Examplel: FORTRAN:

DO 10 I=1,15 is a loop, but
DO 10 I=1.15 is an assignment.

NB! Blanks have no meaning in FORTRAN.

Example 2: Pascal

VAR i: 15..25;

Lecture 1 Compilers, Introduction Page 12

Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Syntax analysis (parsing)

Input:
Sequence of tokens

Output:

Parse tree, error messages

Function:

1. Determine whether the input sequence forms a
structure which is legal according to the definition of
the language.

Examplel: OK.

FTR’ X! =t 117 CTHEN' ‘X! 'i=’ 117
Example 2: Not OK.

FIFF’ 'YX’ ‘=’ 11’ 'THEN’ 'X’' ':=' 1717

which produces the sequence of tokens:

< 7, 23 >
< 7, 16 > {Two identifiersinarow — wrong!}
<9, 0 >

Lecture 1 Compilers, Introduction Page 13

Lecture 1 Compilers, Introduction Page 14

Linképing University Linkoping University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99 Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

2. Group tokens into syntactic units and construct

parse trees which exhibit the structure. Semantic analysis and intermediate code

generation

Example: A/B*C Input:

Parse tree + symbol table
<exp> Output:

intermediate code + symbol table temp.variables,
information on their type ...

Function:
<exp> ! <exp> 1. Semantic analysis checks items which a grammar
can not describe:
¢ type compatibility a := 1 * 1.5
<id> <id> * <id> .

A B c » correct number and type of parameters in calls
to procedures as specified in the procedure
declaration.

represents A/ (B*C) 2. Generate intermediate code.

i.e. right-associative (is this desirable?) .
Example:a + B * C inthe form of a parse tree

The syntax of a language is described using a Produces in reverse Polish notation:
context-free grammar. A B C* +
Or three-address code:
Tl := B * C
T2 := A + T1
Lecture 1 Compilers, Introduction Page 15 Lecture 1 Compilers, Introduction Page 16
Linképing University Linkoping University
Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture-1 Autumn 99 Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1 Autumn 99

Or abstract syntax tree: Code optimisation (more appropriately: “Code

improvement”)

/+\ Input:

A Internal form

*
/ \ Output:
B o]

Internal form, hopefully improved.

Machine-independent code optimisation:

In some way make the machine code faster or more

The intermediate form is used because it is: compact by transforming the internal form.

1. Simpler than the high-level language (fewer and Example: Eliminating common sub-expressions

simpler operations).

2. Not profiled for a given machine (portability). Stepwise improvement
3. Suitable for optimisation. A:=B+C*I | T1:=C*I T1l:=C*I
D:=C*I+E | T2:=B+T1 A:=B+T1
A:=T2 D:=T1+E
Syntax-directed translation schemes are used to attach T3:oC*T
semantic routines (rules) to syntactic constructions. T4:-T3+E
D:=T4

Example: Code with no effect!? (two assignments to
the same variable)

A:=B*C*D+4; <« removed (or error message)k
« logical error perhaps?

Lecture 1 Compilers, Introduction Page 17 Lecture 1 Compilers, Introduction Page 18

Linképing Universit

y
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1

Autumn 99

Code generation

Input:

Internal form

Output:

Machine code/assembly code

Function:
1.

Register allocation and machine code generation
(or assembly code).

2. Instruction scheduling (specially important for
RISC)

3. Machine-dependent code optimisation
(so-called “peephole optimisation”).

Example: Zz := A+B*C s translated to:
MOVE 1, B
IMUL 1, C
ADD 1, A
MOVEM 1, Z

1

Linképing University
Dept. Computer and Information Science ~ COMPILER CONSTRUCTION Lecture-1

Autumn 99

Table management

Updating and search in tables

« Symbol table (for identifiers)
e String table

« Constant table

Help for other phases during compilation.

Lecture 1 Compilers, Introduction

Page 19

Linképing University

Dept. Computer and Information Science COMPILER CONSTRUCTION Lecture-1

Autumn 99

1.

2.
3.
4

Error management

Examples of error messages:

Discover an error.

Write an error message.

Correct the error (or guess, very difficult!)
Restart from the error (try to continue).

Lexical analysis:

Faulty sequence of characters which does not
result in a token, e.g.

0, 5EL, %K, ’‘string

Syntax analysis:

Syntax error (e.g. missing semicolon).
Semantic analysis:

Type conflict, e.g. "HEJ’ +5
Code optimisation:

Uninitialised variables, anomaly detection.
Code generation:

Too large integers, run out of memory.
Table management:

Double declaration, table overflow.

Lecture 1 Compilers, Introduction

Page 21

Lecture 1 Compilers, Introduction

Page 20

