2015-10-06 Introduction to dplyr

Introduction to dplyr

2015-08-31

When working with data you must:
o Figure out what you want to do.
o Describe those tasks in the form of a computer program.

o Execute the program.

The dplyr package makes these steps fast and easy:

o By constraining your options, it simplifies how you can think about common data
manipulation tasks.

o It provides simple “verbs”, functions that correspond to the most common data
manipulation tasks, to help you translate those thoughts into code.

o It uses efficient data storage backends, so you spend less time waiting for the computer.

This document introduces you to dplyr’s basic set of tools, and shows you how to apply them to
data frames. Other vignettes provide more details on specific topics:

o databases: Besides in-memory data frames, dplyr also connects to out-of-memory, remote
databases. And by translating your R code into the appropriate SQL, it allows you to work
with both types of data using the same set of tools.

o benchmark-baseball: see how dplyr compares to other tools for data manipulation on a
realistic use case.

o window-functions: a window function is a variation on an aggregation function. Where an
aggregate function uses n inputs to produce 1 output, a window function uses n inputs to
produce n outputs.

Data: nycflights13

To explore the basic data manipulation verbs of dplyr, we’ll start with the built in nycflights13 data
frame. This dataset contains all 336776 flights that departed from New York City in 2013. The data
comes from the US Bureau of Transportation Statistics, and is documented in ?nycflightsi3

library(nycflightsi3)

dim(flights)

#> [1] 336776 16

head(flights)

#> Source: local data frame [6 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N864JB
#> ..

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

1/13

2015-10-06 Introduction to dplyr

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

dplyr can work with data frames as is, but if you’re dealing with large data, it’s worthwhile to
convert them to a tbl_df: this is a wrapper around a data frame that won’t accidentally print a lot
of data to the screen.

Single table verbs

Dplyr aims to provide a function for each basic verb of data manipulation:

o filter() (and slice())

o arrange()

o select() (and rename())

o distinct()

o mutate() (and transmute())

o summarise()

o sample_n() and sample_frac()

If you’ve used plyr before, many of these will be familar.

Filter rows with filter()

filter() allows you to select a subset of rows in a data frame. The first argument is the name of
the data frame. The second and subsequent arguments are the expressions that filter the data
frame:

For example, we can select all flights on January 1st with:

filter(flights, month == 1, day == 1)
#> Source: local data frame [842 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804IB
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

This is equivalent to the more verbose code in base R:

flights[flights$month == 1 & flights$day == 1,]

filter() works similarly to subset() except that you can give it any number of filtering conditions,
which are joined together with & (not && which is easy to do accidentally!). You can also use other
boolean operators:

filter(flights, month == 1 | month == 2)

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 2/13

2015-10-06 Introduction to dplyr
To select rows by position, use slice():

slice(flights, 1:10)
#> Source: local data frame [10 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804IB
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dblL), minute (dbl)

Arrange rows with arrange()

arrange() works similarly to filter() except that instead of filtering or selecting rows, it reorders
them. It takes a data frame, and a set of column names (or more complicated expressions) to
order by. If you provide more than one column name, each additional column will be used to break
ties in the values of preceding columns:

arrange(flights, year, month, day)
#> Source: local data frame [336,776 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N8064JB
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

Use desc() to order a column in descending order:

arrange(flights, desc(arr_delay))
#> Source: local data frame [336,776 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 9 641 1301 1242 1272 HA N384HA
#> 2 2013 6 15 1432 1137 1607 1127 MQ N504MQ
#> 3 2013 1 10 1121 1126 1239 1109 MQ N517MQ
#> 4 2013 9 20 1139 1014 1457 1007 AA N338AA
#> .

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

3/13

2015-10-06 Introduction to dplyr

dplyr::arrange() works the same way as plyr::arrange(). It’s a straighforward wrapper around
order() that requires less typing. The previous code is equivalent to:

flights[order(flights$year, flights$month, flights$day),]
flights[order(desc(flights$arr_delay)),]

Select columns with select()

Often you work with large datasets with many columns but only a few are actually of interest to
you. select() allows you to rapidly zoom in on a useful subset using operations that usually only
work on numeric variable positions:

Select columns by name
select(flights, year, month, day)
#> Source: local data frame [336,776 x 3]

#>

#> year month day
#> (int) (int) (int)
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> ..

Select all columns between year and day (inclusive)
select(flights, year:day)
#> Source: local data frame [336,776 x 3]

#>

#> year month day
#> (int) (int) (int)
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> ..

Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
#> Source: local data frame [336,776 x 13]

#>

#> dep_time dep_delay arr_time arr_delay carrier tailnum flight origin
#> (int) (dbl) (int) (dbl) (chr) (chr) (int) (chr)
#> 1 517 2 830 11 UA N14228 1545 EWR
#> 2 533 4 850 20 UA N24211 1714 LGA
#> 3 542 2 923 33 AA N619AA 1141 JFK
#> 4 544 -1 1004 -18 B6 N804JB 725 JFK
#> ..

#> Variables not shown: dest (chr), air_time (dbl), distance (dbl), hour
#> (dbl), minute (dbl)

This function works similarly to the select argument in base: :subset(). Because the dplyr
philosophy is to have small functions that do one thing well, it’s its own function in dplyr.

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

4/13

2015-10-06 Introduction to dplyr

There are a number of helper functions you can use within select(), like starts_with(),
ends_with(), matches() and contains(). These let you quickly match larger blocks of variables that
meet some criterion. See ?select for more details.

You can rename variables with select() by using named arguments:

select(flights, tail num = tailnum)
#> Source: local data frame [336,776 x 1]

#>

#> tail_num
#> (chr)
#> 1 N14228
#> 2 N24211
#> 3 N619AA
#> 4 N804IB
#> ..

But because select() drops all the variables not explicitly mentioned, it’s not that useful. Instead,
use rename():

rename(flights, tail _num = tailnum)
#> Source: local data frame [336,776 x 16]

#>

#> year month day dep_time dep _delay arr_time arr_delay carrier
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr)
#> 1 2013 1 1 517 2 836 11 UA
#> 2 2013 1 1 533 4 850 20 UA
#> 3 2013 1 1 542 2 923 33 AA
#> 4 2013 1 1 544 -1 1004 -18 B6
#> ..

#> tail_num

#> (chr)

#> 1 N14228

#> 2 N24211

#> 3 N619AA

#> 4 N804IB

#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

Extract distinct (unique) rows

A common use of select() is to find the values of a set of variables. This is particularly useful in
conjunction with the distinct() verb which only returns the unique values in a table.

distinct(select(flights, tailnum))
#> Source: local data frame [4,044 x 1]

#>
#> tailnum
#> (chr)

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 5/13

2015-10-06 Introduction to dplyr

#> 1 N14228
#> 2 N24211
#> 3 N619AA
#> 4 N804IB
#> ..

distinct(select(flights, origin, dest))
#> Source: local data frame [224 x 2]

#>

#> origin dest
#> (chr) (chr)
#> 1 EWR IAH
#> 2 LGA IAH
#> 3 JFK MIA
#> 4 JFK BQN
#> ..

(This is very similar to base: :unique() but should be much faster.)

Add new columns with mutate()

Besides selecting sets of existing columns, it’s often useful to add new columns that are functions
of existing columns. This is the job of mutate():

mutate(flights,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60)
#> Source: local data frame [336,776 x 18]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N8043JB
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl), gain (dbl), speed (dbl)

dplyr::mutate() works the same way as plyr::mutate() and similarly to base: :transform(). The key
difference between mutate() and transform() is that mutate allows you to refer to columns that
you’ve just created:

mutate(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)

)

#> Source: local data frame [336,776 x 18]

#>
#> year month day dep_time dep _delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 6/13

2015-10-06

#> 1 2013 1 1 517 2 830
#> 2 2013 1 1 533 4 850
#> 3 2013 1 1 542 2 923
#> 4 2013 1 1 544 -1 1004
#> ..

Introduction to dplyr

11
20
33
-18

UA
UA
AA
B6

N14228
N24211
N619AA
N804JB

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time

#> (dbl), distance (dbl), hour (dblL), minute (dbl), gain (dbl),

#> gain_per_hour (dbl)

transform(flights,
gain = arr_delay - delay,
gain_per_hour = gain / (air_time / 60)
)

#> Error: object 'gain' not found

If you only want to keep the new variables, use transmute():

transmute(flights,
gain = arr_delay - dep_delay,

gain_per_hour = gain / (air_time / 60)

)

#> Source: local data frame [336,776 x 2]
#>

#> gain gain_per_hour

#> (dbl) (dbl)

#> 1 9 2.378855

#> 2 16 4.229075

#> 3 31 11.625000

#> 4 -17 -5.573776

#> ..

Summarise values with summarise()

The last verb is summarise(). It collapses a data frame to a single row (this is exactly equivalent to

plyr::summarise()):

summarise(flights,
delay = mean(dep_delay, na.rm = TRUE))
#> Source: local data frame [1 x 1]

#>
#> delay
#> (dbl)

#> 1 12.63907

Below, we’ll see how this verb can be very useful.

Randomly sample rows with sample n() and sample_frac()

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

7/13

2015-10-06 Introduction to dplyr

You can use sample_n() and sample_frac() to take a random sample of rows: use sample_n() for a
fixed number and sample_frac() for a fixed fraction.

sample_n(flights, 10)
#> Source: local data frame [10 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 6 12 1428 -7 1733 -17 DL N376NW
#> 2 2013 3 23 600 -7 955 23 UA N510UA
#> 3 2013 3 29 1814 14 1920 3 B6 N2383JB
#> 4 2013 2 25 1957 -10 2156 -10 EV N19966
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
sample_frac(flights, 0.01)

#> Source: local data frame [3,368 x 16]

#>

#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> (int) (int) (int) (int) (dbl) (int) (dbl) (chr) (chr)
#> 1 2013 5 7 1156 -4 1321 -17 UA N432UA
#> 2 2013 4 18 1543 -5 1755 -25 DL N369NB
#> 3 2013 3 26 1408 -7 1623 -8 DL N344NB
#> 4 2013 1 24 2001 66 2211 71 MQ N526MQ
#> ..

#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)

Use replace = TRUE to perform a bootstrap sample. If needed, you can weight the sample with the
weight argument.

Commonalities

You may have noticed that the syntax and function of all these verbs are very similar:
o The first argument is a data frame.

o The subsequent arguments describe what to do with the data frame. Notice that you can
refer to columns in the data frame directly without using $.

o The result is a new data frame

Together these properties make it easy to chain together multiple simple steps to achieve a
complex result.

These five functions provide the basis of a language of data manipulation. At the most basic level,
you can only alter a tidy data frame in five useful ways: you can reorder the rows (arrange()), pick
observations and variables of interest (filter() and select()), add new variables that are functions
of existing variables (nutate()), or collapse many values to a summary (summarise()). The remainder
of the language comes from applying the five functions to different types of data. For example, Ill
discuss how these functions work with grouped data.

Grouped operations

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 8/13

2015-10-06 Introduction to dplyr
These verbs are useful on their own, but they become really powerful when you apply them to
groups of observations within a dataset. In dplyr, you do this by with the group_by() function. It
breaks down a dataset into specified groups of rows. When you then apply the verbs above on the
resulting object they’ll be automatically applied “by group”. Most importantly, all this is achieved
by using the same exact syntax you’d use with an ungrouped object.

Grouping affects the verbs as follows:

o grouped select() is the same as ungrouped select(), except that grouping variables are
always retained.

o grouped arrange() orders first by the grouping variables

o mutate() and filter() are most useful in conjunction with window functions (like rank(), or
min(x) == x). They are described in detail in vignette("window-functions").

o sample_n() and sample_frac() sample the specified number/fraction of rows in each group.
o slice() extracts rows within each group.

o summarise() is powerful and easy to understand, as described in more detail below.

In the following example, we split the complete dataset into individual planes and then summarise
each plane by counting the number of flights (count = n()) and computing the average distance
(dist = mean(Distance, na.rm = TRUE)) and arrival delay (delay = mean(ArrDelay, na.rm = TRUE)).
We then use ggplot2 to display the output.

by_tailnum <- group_by(flights, tailnum)
delay <- summarise(by_tailnum,
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)

Interestingly, the average delay is only slightly related to the
average distance flown by a plane.
ggplot(delay, aes(dist, delay)) +

geom_point(aes(size = count), alpha = 1/2) +

geom_smooth() +

scale_size_area()

et a
(ELE)

count
- | . ® 500
O | | | ® 1000
® 1500
® zo00

O 2500

delay
E_'\

L]

crn P, P "
:‘-IJI__ '\.I'\.IU '\.-"\.IU I

dist

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 9/13

2015-10-06 Introduction to dplyr
You use summarise() with aggregate functions, which take a vector of values and return a single
number. There are many useful examples of such functions in base R like min(), max(), mean(),
sum(), sd(), median(), and IQRr(). dplyr provides a handful of others:

o n(): the number of observations in the current group
o n_distinct(x):the number of unique values in x.

o first(x), last(x) and nth(x, n) - these work similarly to x[1], x[1ength(x)], and x[n] but
give you more control over the result if the value is missing.

For example, we could use these to find the number of planes and the number of flights that go to
each possible destination:

destinations <- group_by(flights, dest)
summarise(destinations,
planes = n_distinct(tailnum),
flights = n()
)
#> Source: local data frame [105 x 3]

#>

#> dest planes flights
#> (chr) (int) (int)
#> 1 ABQ 108 254
#> 2 ACK 58 265
#> 3 ALB 172 439
#> 4 ANC 6 8
#> ..

You can also use any function that you write yourself. For performance, dplyr provides optimised
C++ versions of many of these functions. If you want to provide your own C++ function, see the
hybrid-evaluation vignette for more details.

When you group by multiple variables, each summary peels off one level of the grouping. That
makes it easy to progressively roll-up a dataset:

daily <- group_by(flights, year, month, day)
(per_day <- summarise(daily, flights = n()))
#> Source: local data frame [365 x 4]

#> Groups: year, month [?]

#>

#> year month day flights
#> (int) (int) (int) (int)
#> 1 2013 1 1 842
#> 2 2013 1 2 943
#> 3 2013 1 3 914
#> 4 2013 1 4 915
#> ..

(per_month <- summarise(per_day, flights = sum(flights)))
#> Source: local data frame [12 x 3]

#> Groups: year [?]

#>

#> year month flights

#> (int) (int) (int)

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 10/13

2015-10-06
#> 1 2013
#> 2 2013
#> 3 2013
#> 4 2013
#> ..
(per_year

A W N R

Introduction to dplyr

27004
24951
28834
28330

<- summarise(per_month, flights = sum(flights)))

#> Source: local data frame [1 x 2]

#>
#>
#>

year flights
(int)
#> 1 2013 336776

(int)

However you need to be careful when progressively rolling up summaries like this: it’s ok for sums
and counts, but you need to think about weighting for means and variances (it’s not possible to do
this exactly for medians).

Chaining

The dplyr API is functional in the sense that function calls don’t have side-effects. You must
always save their results. This doesn’t lead to particularly elegant code, especially if you want to
do many operations at once. You either have to do it step-by-step:

al <-
a2 <-
a3 «<-

a4 <-

ar
de

r

summarise (a2,

group_by(flights, year, month, day)
select(al, arr_delay, dep_delay)

mean(arr_delay, na.rm = TRUE),

p = mean(dep_delay, na.rm = TRUE))

filter(a3, arr > 30 | dep > 30)

Or if you don’t want to save the intermediate results, you need to wrap the function calls inside
each other:

filter(

)

#>
#>
#>
#>
#>
#>
#>
#>

summarise(

)s

ar

select(

group_by(flights, year, month, day),

arr_delay, dep_delay

)

arr = mean(arr_delay, na.rm = TRUE),
dep = mean(dep_delay, na.rm = TRUE)
r > 30 | dep > 30

Source: Llocal data frame [49 x 5]

Groups: year, month [11]

1
2
3

year month
(int) (int) (int) (dbl) (dbl)

2013
2013
2013

1
1
2

day arr dep

16 34.24736 24.61287
31 32.60285 28.65836
11 36.29009 39.07360

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html

11/13

2015-10-06 Introduction to dplyr

#> 4 2013 2 27 31.25249 37.76327
#> ..

This is difficult to read because the order of the operations is from inside to out. Thus, the
arguments are a long way away from the function. To get around this problem, dplyr provides the
%>% operator. x %>% f(y) turnsinto f(x, y) so you can use it to rewrite multiple operations that you
can read left-to-right, top-to-bottom:

flights %>%
group_by(year, month, day) %>%
select(arr_delay, dep_delay) %>%
summarise(

arr = mean(arr_delay, na.rm = TRUE),

dep = mean(dep_delay, na.rm = TRUE)

) %>%
filter(arr > 30 | dep > 30)

Other data sources

As well as data frames, dplyr works with data that is stored in other ways, like data tables,
databases and multidimensional arrays.

Data table

dplyr also provides data table methods for all verbs. If you’re using data.tables already this lets
you to use dplyr syntax for data manipulation, and data.table for everything else.

For multiple operations, data.table can be faster because you usually use it with multiple verbs
simultaneously. For example, with data table you can do a mutate and a select in a single step. It’s
smart enough to know that there’s no point in computing the new variable for rows you’re about to
throw away.

The advantages of using dplyr with data tables are:

o For common data manipulation tasks, it insulates you from the reference semantics of
data.tables, and protects you from accidentally modifying your data.

o Instead of one complex method built on the subscripting operator ([), it provides many
simple methods.

Databases

dplyr also allows you to use the same verbs with a remote database. It takes care of generating
the SQL for you so that you can avoid the cognitive challenge of constantly switching between
languages. See the databases vignette for more details.

Compared to DBI and the database connection algorithms:

o it hides, as much as possible, the fact that you’re working with a remote database
o you don’t need to know any SQL (although it helps!)
o it abstracts over the many differences between the different DBl implementations

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 12/13

2015-10-06 Introduction to dplyr

Multidimensional arrays / cubes

tbl_cube() provides an experimental interface to multidimensional arrays or data cubes. If you're
using this form of data in R, please get in touch so | can better understand your needs.

Comparisons

Compared to all existing options, dplyr:

o abstracts away how your data is stored, so that you can work with data frames, data tables
and remote databases using the same set of functions. This lets you focus on what you
want to achieve, not on the logistics of data storage.

o provides a thoughtful default print() method that doesn’t automatically print pages of data
to the screen (this was inspired by data table’s output).
Compared to base functions:

o dplyr is much more consistent; functions have the same interface. So once you’ve mastered
one, you can easily pick up the others

o base functions tend to be based around vectors; dplyr is based around data frames

Compared to plyr, dplyr:
o is much much faster
o provides a better thought out set of joins
o only provides tools for working with data frames (e.g. most of dplyr is equivalent to ddply()
+ various functions, do() is equivalent to diply())
Compared to virtual data frame approaches:

o it doesn’t pretend that you have a data frame: if you want to run Im etc, you’ll still need to
manually pull down the data

o it doesn’t provide methods for R summary functions (e.g. mean(), or sum())

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html 13/13

