2015-10-09 OO field guide - Advanced R.

Advanced R (/) by Hadley Wickham Table of contents ~

Want to learn from me in person? I'm next teaching in DC, Sep 14-15
(https://www.eventbrite.com/e/master-r-developer-workshop-washington-dc-tickets-15220403637).

Want a physical copy of this material? Buy a book from amazon! (http://amzn.com/14665869667
tag=devtools-20).

Contents

Base types

S3

S4

RC

Picking a system
Quiz answers

How to contribute (/contribute.html)

‘ Edit this page (https://github.com/hadley/adv-r/edit/master/O0O-essentials.rmd)

OO field guide

This chapter is a field guide for recognising and working with R’s objects in the wild. R has three object
oriented systems (plus the base types), so it can be a bit intimidating. The goal of this guide is not to make
you an expert in all four systems, but to help you identify which system you’re working with and to help you
use it effectively.

Central to any object-oriented system are the concepts of class and method. A class defines the behaviour
of objects by describing their attributes and their relationship to other classes. The class is also used when
selecting methods, functions that behave differently depending on the class of their input. Classes are
usually organised in a hierarchy: if a method does not exist for a child, then the parent’s method is used
instead; the child inherits behaviour from the parent.

R’s three OO systems differ in how classes and methods are defined:

« 83 implements a style of OO programming called generic-function OO. This is different from most
programming languages, like Java, C++, and C#, which implement message-passing OO. With
message-passing, messages (methods) are sent to objects and the object determines which function

http://adv-r.had.co.nz/OO-essentials.html 1/19

2015-10-09 OO field guide - Advanced R.

to call. Typically, this object has a special appearance in the method call, usually appearing before the
name of the method/message: e.g., canvas.drawRect("blue"). S3 is different. While computations are
still carried out via methods, a special type of function called a generic function decides which
method to call, e.g., drawRect(canvas, "blue"). S3 is a very casual system. It has no formal definition
of classes.

» S4 works similarly to S3, but is more formal. There are two major differences to S3. S4 has formal
class definitions, which describe the representation and inheritance for each class, and has special
helper functions for defining generics and methods. S4 also has multiple dispatch, which means that
generic functions can pick methods based on the class of any number of arguments, not just one.

» Reference classes, called RC for short, are quite different from S3 and S4. RC implements message-
passing OO, so methods belong to classes, not functions. $ is used to separate objects and methods,
so method calls look like canvas$drawRect("blue”). RC objects are also mutable: they don’t use R’s
usual copy-on-modify semantics, but are modified in place. This makes them harder to reason about,
but allows them to solve problems that are difficult to solve with S3 or S4.

There’s also one other system that’s not quite OO, but it’s important to mention here:

» base types, the internal C-level types that underlie the other OO systems. Base types are mostly
manipulated using C code, but they’re important to know about because they provide the building
blocks for the other OO systems.

The following sections describe each system in turn, starting with base types. You’ll learn how to recognise
the OO system that an object belongs to, how method dispatch works, and how to create new objects,
classes, generics, and methods for that system. The chapter concludes with a few remarks on when to use
each system.

Prerequisites

You’ll need the pryr package, install.packages("pryr"), to access useful functions for examining OO
properties.

Quiz

Think you know this material already? If you can answer the following questions correctly, you can safely
skip this chapter. Find the answers at the end of the chapter in answers (OO-essentials.html#oo-answers).

1. How do you tell what OO system (base, S3, S4, or RC) an object is associated with?

2. How do you determine the base type (like integer or list) of an object?

3. What is a generic function?

4. What are the main differences between S3 and S4? What are the main differences between S4 & RC?
Outline

» Base types (OO-essentials.html#base-types) teaches you about R’s base object system. Only R-core
can add new classes to this system, but it’s important to know about because it underpins the three
other systems.

e S3 (O0-essentials.html#s3) shows you the basics of the S3 object system. It’s the simplest and most
commonly used OO system.

http://adv-r.had.co.nz/OO-essentials.html 2/19

2015-10-09 OO field guide - Advanced R.

e 5S4 (OO-essentials.html#s4) discusses the more formal and rigorous S4 system.

» RC (OO-essentials.html#rc) teaches you about R’s newest OO system: reference classes, or RC for
short.

» Picking a system (OO-essentials.html#picking-a-system) advises on which OO system to use if you’re
starting a new project.

Base types

Underlying every R object is a C structure (or struct) that describes how that object is stored in memory. The
struct includes the contents of the object, the information needed for memory management, and, most
importantly for this section, a type. This is the base type of an R object. Base types are not really an object
system because only the R core team can create new types. As a result, new base types are added very
rarely: the most recent change, in 2011, added two exotic types that you never see in R, but are useful for
diagnosing memory problems (NEWSXP and FREESXP). Prior to that, the last type added was a special base
type for S4 objects (S4SXP) in 2005.

Data structures (Data-structures.html#data-structures) explains the most common base types (atomic
vectors and lists), but base types also encompass functions, environments, and other more exotic objects
likes names, calls, and promises that you’ll learn about later in the book. You can determine an object’s base
type with typeof (). Unfortunately the names of base types are not used consistently throughout R, and type
and the corresponding “is” function may use different names:

The type of a function is "closure”
f <= function() {}

typeof (f)

#> [1] "closure”

is.function(f)

#> [1] TRUE

The type of a primitive function is "builtin”
typeof (sum)

#> [1] "builtin”

is.primitive(sum)

#> [1] TRUE

You may have heard of mode() and storage.mode(). | recommend ignoring these functions because they’re
just aliases of the names returned by typeof (), and exist solely for S compatibility. Read their source code if
you want to understand exactly what they do.

Functions that behave differently for different base types are almost always written in C, where dispatch
occurs using switch statements (e.g., switch(TYPEOF(x))). Even if you never write C code, it’s important to
understand base types because everything else is built on top of them: S3 objects can be built on top of any

http://adv-r.had.co.nz/OO-essentials.html 3/19

2015-10-09 OO field guide - Advanced R.

base type, S4 objects use a special base type, and RC objects are a combination of S4 and environments
(another base type). To see if an object is a pure base type, i.e., it doesn’t also have S3, S4, or RC
behaviour, check that is.object(x) returns FALSE.

S3

S3 is R’s first and simplest OO system. It is the only OO system used in the base and stats packages, and
it’s the most commonly used system in CRAN packages. S3 is informal and ad hoc, but it has a certain
elegance in its minimalism: you can’t take away any part of it and still have a useful OO system.

Recognising objects, generic functions, and methods

Most objects that you encounter are S3 objects. But unfortunately there’s no simple way to test if an object
is an S3 object in base R. The closest you can come is is.object(x) & !isS4(x), i.e., it’s an object, but not
S4. An easier way is to use pryr: :otype():

library(pryr)

df <- data.frame(x = 1:10, y = letters[1:10])
otype(df) # A data frame is an S3 class

#> [1] "S3”

otype(df$x) # A numeric vector isn’t
#> [1] "base”

otype(df$y) # A factor is

#> [1] "S3”

In S3, methods belong to functions, called generic functions, or generics for short. S3 methods do not
belong to objects or classes. This is different from most other programming languages, but is a legitimate
OO0 style.

To determine if a function is an S3 generic, you can inspect its source code for a call to UseMethod(): that’s
the function that figures out the correct method to call, the process of method dispatch. Similar to otype(),
pryr also provides ftype() which describes the object system, if any, associated with a function:

mean

#> function (x, ...)

#> UseMethod("mean”

#> <bytecode: 0x21b6ea8>

#> <environment: namespace:base>
ftype(mean)

#> [1] "s3” "generic”

Some S3 generics, like [, sum(), and cbind(), don’t call UseMethod() because they are implemented in C.

Instead, they call the C functions DispatchGroup() or DispatchOrEval(). Functions that do method dispatch
in C code are called internal generics and are documented in ?"internal generic”. ftype() knows about

http://adv-r.had.co.nz/OO-essentials.html 4/19

2015-10-09 OO field guide - Advanced R.

these special cases too.

Given a class, the job of an S3 generic is to call the right S3 method. You can recognise S3 methods by their
names, which look like generic.class(). For example, the Date method for the mean() generic is called
mean.Date(), and the factor method for print() is called print.factor().

This is the reason that most modern style guides discourage the use of . in function names: it makes them
look like S3 methods. For example, is t.test() the t method for test objects? Similarly, the use of . in
class names can also be confusing: is print.data.frame() the print() method for data.frames, or the
print.data() method for frames? pryr::ftype() knows about these exceptions, so you can use it to figure
out if a function is an S3 method or generic:

ftype(t.data.frame) # data frame method for t()

#> [1] "s3” "method”
ftype(t.test) # generic function for t tests
#> [1] "s3” "generic”

You can see all the methods that belong to a generic with methods():

methods ("mean”

#> [1] mean.Date mean.default mean.difftime mean.POSIXct mean.POSIXIt
#> see '?methods’ for accessing help and source code

methods("t.test")

#> [1] t.test.default* t.test.formula*

#> see '?methods’ for accessing help and source code

(Apart from methods defined in the base package, most S3 methods will not be visible: use getS3method()
to read their source code.)

You can also list all generics that have a method for a given class:

methods(class = "ts")

#> [1] aggregate as.data.frame cbind coerce cycle
#> [6] diffinv diff Initialize kernapply lines
#> [11] Math2 Math monthplot na.omit Ops

#> [16] plot print show slotsFromS3 time
#> [21] [<- [t window<- window

#> see '?methods’ for accessing help and source code

There’s no way to list all S3 classes, as you’ll learn in the following section.

Defining classes and creating objects

S3 is a simple and ad hoc system; it has no formal definition of a class. To make an object an instance of a
class, you just take an existing base object and set the class attribute. You can do that during creation with
structure(), or after the fact with class<-():

http://adv-r.had.co.nz/OO-essentials.html 5/19

2015-10-09 OO field guide - Advanced R.

Create and assign class in one step
foo <- structure(list(), class = "foo")

Create, then set class
foo <- list()
class(foo) <- "foo"

S3 objects are usually built on top of lists, or atomic vectors with attributes. (You can refresh your memory of
attributes with attributes (Data-structures.htmil#attributes).) You can also turn functions into S3 objects.
Other base types are either rarely seen in R, or have unusual semantics that don’t work well with attributes.

You can determine the class of any object using class(x), and see if an object inherits from a specific class
using inherits(x, "classname").

class(foo)

[1] "foo”
inherits(foo, "foo")
#> [1] TRUE

The class of an S3 object can be a vector, which describes behaviour from most to least specific. For
example, the class of the gIlm() objectis c("glm”, "1m") indicating that generalised linear models inherit
behaviour from linear models. Class names are usually lower case, and you should avoid .. Otherwise,
opinion is mixed whether to use underscores (my_class) or CamelCase (MyClass) for multi-word class
names.

Most S3 classes provide a constructor function:
foo <- function(x) {

if (!is.numeric(x)) stop(”"X must be numeric")
structure(list(x), class = "foo")

You should use it if it’s available (like for factor() and data.frame()). This ensures that you’re creating the
class with the correct components. Constructor functions usually have the same name as the class.

Apart from developer supplied constructor functions, S3 has no checks for correctness. This means you can
change the class of existing objects:

http://adv-r.had.co.nz/OO-essentials.html 6/19

2015-10-09 OO field guide - Advanced R.

Create a linear model

mod <- Im(log(mpg) ~ log(disp), data = mtcars)
class(mod)

#> [17 “1m”

print(mod)

#>

#> Call:

#> Im(formula = log(mpg) ~ log(disp), data = mtcars)
#>

#> Coefficients:

#> (Intercept) log(disp)

#> 5.3810 -0.4586

Turn it into a data frame (?!)
class(mod) <- "data.frame”
But unsurprisingly this doesn’t work very well

print(mod)

#> [1] coefficients residuals effects rank fitted.values
#> [6] assign qr df.residual xlevels call

#> [11] terms model

#> <0 rows> (or ©0-length row.names)
However, the data is still there
mod$coefficients

#> (Intercept) 1log(disp)

#> 5.3809725 -0.4585683

If you’ve used other OO languages, this might make you feel queasy. But surprisingly, this flexibility causes
few problems: while you can change the type of an object, you never should. R doesn’t protect you from
yourself: you can easily shoot yourself in the foot. As long as you don’t aim the gun at your foot and pull the
trigger, you won’t have a problem.

Creating new methods and generics

To add a new generic, create a function that calls UseMethod(). UseMethod() takes two arguments: the name
of the generic function, and the argument to use for method dispatch. If you omit the second argument it will
dispatch on the first argument to the function. There’s no need to pass any of the arguments of the generic
to UseMethod() and you shouldn’t do so. UseMethod() uses black magic to find them out for itself.

f <- function(x) UseMethod("f")

A generic isn’t useful without some methods. To add a method, you just create a regular function with the
correct (generic.class) name:

http://adv-r.had.co.nz/OO-essentials.html 719

2015-10-09 OO field guide - Advanced R.

f.a <- function(x) "Class a”

a <- structure(list(), class = "a")
class(a)

[1] "a”

f(a)

#> [1] "Class a”

Adding a method to an existing generic works in the same way:

mean.a <- function(x) "a"
mean(a)
#> [7] IIaII

As you can see, there’s no check to make sure that the method returns the class compatible with the
generic. It’s up to you to make sure that your method doesn’t violate the expectations of existing code.

Method dispatch

S3 method dispatch is relatively simple. UseMethod() creates a vector of function names, like
paste@(”generic”, ".", c(class(x), "default”)) and looks for each in turn. The “default” class makes it
possible to set up a fall back method for otherwise unknown classes.

f <- function(x) UseMethod("f")
f.a <- function(x) "Class a”
f.default <- function(x) "Unknown class"”

f(structure(list(), class = "a"))

[1] "Class a”

No method for b class, so uses method for a class
f(structure(list(), class = c("b", "a")))

[1] "Class a”

No method for c¢ class, so falls back to default
f(structure(list(), class = "c"))

#> [1] "Unknown class”

Group generic methods add a little more complexity. Group generics make it possible to implement
methods for multiple generics with one function. The four group generics and the functions they include are:

e Math: abs, sign, sqrt, floor, cos, sin, log, exp, ...

e Ops:+, =, %, /, ", %%, %6/%, &, |, !, ==, 1=, <, <=, >=, >
e Summary: all, any, sum, prod, min, max, range

e Complex: Arg, Conj, Im, Mod, Re

http://adv-r.had.co.nz/OO-essentials.html 8/19

2015-10-09 OO field guide - Advanced R.

Group generics are a relatively advanced technique and are beyond the scope of this chapter but you can
find out more about them in ?groupGeneric. The most important thing to take away from this is to recognise
that Math, Ops, Summary, and Complex aren’t real functions, but instead represent groups of functions. Note
that inside a group generic function a special variable .Generic provides the actual generic function called.

If you have complex class hierarchies it’s sometimes useful to call the “parent” method. It’s a little bit tricky
to define exactly what that means, but it’s basically the method that would have been called if the current
method did not exist. Again, this is an advanced technique: you can read about it in ?NextMethod.

Because methods are normal R functions, you can call them directly:

c <- structure(list(), class = "c")
Call the correct method:
f.default(c)

#> [1] "Unknown class”

Force R to call the wrong method:
f.a(c)

[1] "Class a”

However, this is just as dangerous as changing the class of an object, so you shouldn’t do it. Please don’t
point the loaded gun at your foot! The only reason to call the method directly is that sometimes you can get
considerable performance improvements by skipping method dispatch. See performance (Profiling.html#be-
lazy) for details.

You can also call an S3 generic with a non-S3 object. Non-internal S3 generics will dispatch on the implicit
class of base types. (Internal generics don’t do that for performance reasons.) The rules to determine the
implicit class of a base type are somewhat complex, but are shown in the function below:

iclass <- function(x) {
if (is.object(x)) {
stop(”x is not a primitive type"”, call. = FALSE)

c(
if (is.matrix(x)) "matrix",
if (is.array(x) && !is.matrix(x)) "array"”,
if (is.double(x)) "double”,
if (is.integer(x)) "integer",

mode (x)
)
}
iclass(matrix(1:5))
#> [1] "matrix” "integer” "numeric”
iclass(array(1.5))
#> [1] "array” "double” "numeric”

http://adv-r.had.co.nz/OO-essentials.html 9/19

2015-10-09 OO field guide - Advanced R.

Exercises

1. Read the source code for t() and t.test() and confirm that t.test() is an S3 generic and not an S3
method. What happens if you create an object with class test and call t() with it?

2. What classes have a method for the Math group generic in base R? Read the source code. How do
the methods work?

3. R has two classes for representing date time data, POSIXct and POSIX1t, which both inherit from
POSIXt. Which generics have different behaviours for the two classes? Which generics share the same
behaviour?

4. Which base generic has the greatest number of defined methods?

5. UseMethod() calls methods in a special way. Predict what the following code will return, then run it
and read the help for UseMethod() to figure out what’s going on. Write down the rules in the simplest
form possible.

y <=1
g <- function(x) {
y <- 2
UseMethod("g")
}
g.numeric <- function(x) y
g(10)

h <- function(x) {
X <- 10
UseMethod("h")

}

h.character <- function(x) paste(”char”, x)
h.numeric <- function(x) paste(”num”, x)

h(nan)

6. Internal generics don’t dispatch on the implicit class of base types. Carefully read ?"internal
generic” to determine why the length of f and g is different in the example below. What function
helps distinguish between the behaviour of f and g?

http://adv-r.had.co.nz/OO-essentials.html 10/19

2015-10-09 OO field guide - Advanced R.

f <- function() 1
g <- function() 2
class(g) <- "function”

class(f)
class(g)

length.function <- function(x) "function"
length(f)
length(g)

S4

S4 works in a similar way to S3, but it adds formality and rigour. Methods still belong to functions, not
classes, but:

» Classes have formal definitions which describe their fields and inheritance structures (parent classes).
« Method dispatch can be based on multiple arguments to a generic function, not just one.
» There is a special operator, @, for extracting slots (aka fields) from an S4 object.

All S4 related code is stored in the methods package. This package is always available when you’re running
R interactively, but may not be available when running R in batch mode. For this reason, it’s a good idea to
include an explicit library(methods) whenever you're using S4.

S4 is a rich and complex system. There’s no way to explain it fully in a few pages. Here I’ll focus on the key
ideas underlying S4 so you can use existing S4 objects effectively. To learn more, some good references
are:

» S4 system development in Bioconductor (http://www.bioconductor.org/help/course-
materials/2010/AdvancedR/S4InBioconductor.pdf)

» John Chambers’ Software for Data Analysis (http://amzn.com/03877593527?tag=devtools-20)

» Martin Morgan’s answers to S4 questions on stackoverflow (http://stackoverflow.com/search?
tab=votes&q=user%3a547331%20%5bs4%5d%20is%3aanswe)

Recognising objects, generic functions, and methods

Recognising S4 objects, generics, and methods is easy. You can identify an S4 object because str()
describes it as a “formal” class, isS4() returns TRUE, and pryr::otype() returns “S4”. S4 generics and
methods are also easy to identify because they are S4 objects with well defined classes.

There aren’t any S4 classes in the commonly used base packages (stats, graphics, utils, datasets, and
base), so we’ll start by creating an S4 object from the built-in stats4 package, which provides some S4
classes and methods associated with maximum likelihood estimation:

http://adv-r.had.co.nz/OO-essentials.html 11/19

2015-10-09 OO field guide - Advanced R.

library(stats4)

From example(mle)

y <- c¢(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

nLL <- function(lambda) - sum(dpois(y, lambda, log = TRUE))
fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))

An S4 object
isS4(fit)

#> [1] TRUE
otype(fit)

#> [1] "S4”

An S4 generic

isS4(nobs)

#> [1] TRUE

ftype(nobs)

#> [1] "s4” "generic”

Retrieve an S4 method, described later
mle_nobs <- method_from_call(nobs(fit))
isS4(mle_nobs)

[1] TRUE

ftype(mle_nobs)

#> [1] "s4” “method”

Use is() with one argument to list all classes that an object inherits from. Use is() with two arguments to
test if an object inherits from a specific class.

is(fit)

#> [1] "mle”
is(fit, "mle")
#> [1] TRUE

You can get a list of all S4 generics with getGenerics(), and a list of all S4 classes with getClasses(). This
list includes shim classes for S3 classes and base types. You can list all S4 methods with showMethods (),
optionally restricting selection either by generic or by class (or both). It’s also a good idea to supply where
= search() to restrict the search to methods available in the global environment.

Defining classes and creating objects

In S3, you can turn any object into an object of a particular class just by setting the class attribute. S4 is
much stricter: you must define the representation of a class with setClass(), and create a new object with
new(). You can find the documentation for a class with a special syntax: class?className, €.g., class?mle.

http://adv-r.had.co.nz/OO-essentials.html 12/19

2015-10-09 OO field guide - Advanced R.

An S4 class has three key properties:

« A name: an alpha-numeric class identifier. By convention, S4 class nhames use UpperCamelCase.

« A named list of slots (fields), which defines slot names and permitted classes. For example, a person

class might be represented by a character name and a numeric age: list(name

= "numeric").

= "character”, age

» A string giving the class it inherits from, or, in S4 terminology, that it contains. You can provide
multiple classes for multiple inheritance, but this is an advanced technique which adds much

complexity.

In slots and contains you can use S4 classes, S3 classes registered with set0ldClass(), or the implicit
class of a base type. In slots you can also use the special class ANY which does not restrict the input.

S4 classes have other optional properties like a validity method that tests if an object is valid, and a

prototype object that defines default slot values. See ?setClass for more details.

The following example creates a Person class with fields name and age, and an Employee class that inherits
from Person. The Employee class inherits the slots and methods from the Person, and adds an additional
slot, boss. To create objects we call new() with the name of the class, and name-value pairs of slot values.

setClass("Person”,

slots = list(name = "character”, age = "numeric"))
setClass("Employee”,

slots = list(boss = "Person”),

contains = "Person”)
alice <- new("Person”, name = "Alice", age = 40)
john <- new("Employee"”, name = "John", age =

20, boss

alice)

Most S4 classes also come with a constructor function with the same name as the class: if that exists, use it

instead of calling new() directly.

To access slots of an S4 object use @ or slot():

alice@age

#> [1] 40

slot(john, "boss")

#> An object of class "Person”
#> Slot "name”:

#> [1] "Alice”

#>

#> Slot "age”:

#> [1] 40

(@ is equivalent to $, and slot() to [[.)

http://adv-r.had.co.nz/OO-essentials.html

13/19

2015-10-09 OO field guide - Advanced R.

If an S4 object contains (inherits from) an S3 class or a base type, it will have a special .Data slot which
contains the underlying base type or S3 object:

setClass("RangedNumeric”,

contains = "numeric”,

slots = list(min = "numeric”, max = "numeric"))
rn <- new("RangedNumeric”, 1:10, min = 1, max = 10)
rn@min
#> [1] 1
rn@.Data
#> [1] 1 2 3 4 5 6 7 8 910

Since R is an interactive programming language, it’s possible to create new classes or redefine existing
classes at any time. This can be a problem when you’re interactively experimenting with S4. If you modify a
class, make sure you also recreate any objects of that class, otherwise you’ll end up with invalid objects.

Creating new methods and generics

S4 provides special functions for creating new generics and methods. setGeneric() creates a new generic
or converts an existing function into a generic. setMethod() takes the name of the generic, the classes the
method should be associated with, and a function that implements the method. For example, we could take
union(), which usually just works on vectors, and make it work with data frames:

setGeneric("union")
#> [1] "union”
setMethod("union”,
c(x = "data.frame”, y = "data.frame"),
function(x, y) {
unique(rbind(x, y))

)

#> [1] "union”
If you create a new generic from scratch, you need to supply a function that calls standardGeneric():

setGeneric("myGeneric”, function(x) {
standardGeneric("myGeneric")

1

#> [1] "myGeneric”

standardGeneric() is the S4 equivalent to UseMethod().

Method dispatch

http://adv-r.had.co.nz/OO-essentials.html 14/19

2015-10-09 OO field guide - Advanced R.

If an S4 generic dispatches on a single class with a single parent, then S4 method dispatch is the same as
S3 dispatch. The main difference is how you set up default values: S4 uses the special class ANY to match
any class and “missing” to match a missing argument. Like S3, S4 also has group generics, documented in
?S4groupGeneric, and a way to call the “parent” method, callNextMethod().

Method dispatch becomes considerably more complicated if you dispatch on multiple arguments, or if your
classes use multiple inheritance. The rules are described in ?Methods, but they are complicated and it’s
difficult to predict which method will be called. For this reason, | strongly recommend avoiding multiple
inheritance and multiple dispatch unless absolutely necessary.

Finally, there are two methods that find which method gets called given the specification of a generic call:

From methods: takes generic name and class names
selectMethod("nobs”, list("mle"))

From pryr: takes an unevaluated function call
method_from_call(nobs(fit))

Exercises

1. Which S4 generic has the most methods defined for it? Which S4 class has the most methods
associated with it?

2. What happens if you define a new S4 class that doesn’t “contain” an existing class? (Hint: read about
virtual classes in ?Classes.)

3. What happens if you pass an S4 object to an S3 generic? What happens if you pass an S3 object to
an S4 generic? (Hint: read ?set0ldClass for the second case.)

RC

Reference classes (or RC for short) are the newest OO system in R. They were introduced in version 2.12.
They are fundamentally different to S3 and S4 because:

» RC methods belong to objects, not functions
» RC objects are mutable: the usual R copy-on-modify semantics do not apply

These properties make RC objects behave more like objects do in most other programming languages, e.g.,
Python, Ruby, Java, and C#. Reference classes are implemented using R code: they are a special S4 class
that wraps around an environment.

Defining classes and creating objects

Since there aren’t any reference classes provided by the base R packages, we’ll start by creating one. RC
classes are best used for describing stateful objects, objects that change over time, so we’ll create a simple
class to model a bank account.

http://adv-r.had.co.nz/OO-essentials.html 15/19

2015-10-09 OO field guide - Advanced R.

Creating a new RC class is similar to creating a new S4 class, but you use setRefClass() instead of
setClass(). The first, and only required argument, is an alphanumeric name. While you can use new() to
create new RC objects, it’'s good style to use the object returned by setRefClass() to generate new objects.
(You can also do that with S4 classes, but it’s less common.)

Account <- setRefClass("”Account")
Account$new()
#> Reference class object of class "Account”

setRefClass() also accepts a list of name-class pairs that define class fields (equivalent to S4 slots).
Additional named arguments passed to new() will set initial values of the fields. You can get and set field
values with $:

Account <- setRefClass(”Account”,
fields = list(balance = "numeric"))

a <- Account$new(balance = 100)
a$balance

#> [1] 100

a$balance <- 200

a$balance

#> [1] 200

Instead of supplying a class name for the field, you can provide a single argument function which will act as
an accessor method. This allows you to add custom behaviour when getting or setting a field. See ?
setRefClass for more details.

Note that RC objects are mutable, i.e., they have reference semantics, and are not copied-on-modify:

b <- a
b$balance

#> [1] 200
a$balance <- 0
b$balance

[1] 0

For this reason, RC objects come with a copy() method that allow you to make a copy of the object:

c <- a%$copy()
c$balance

#> [1] 0
a$balance <- 100
c$balance

#> [1] 0

http://adv-r.had.co.nz/OO-essentials.html 16/19

2015-10-09 OO field guide - Advanced R.

An object is not very useful without some behaviour defined by methods. RC methods are associated with a

class and can modify its fields in place. In the following example, note that you access the value of fields
with their name, and modify them with <<-. You’ll learn more about <<- in Environments

(Environments.html#binding).

Account <- setRefClass("Account”,
fields = list(balance = "numeric"),
methods = list(

withdraw = function(x) {
balance <<- balance - x

1

deposit = function(x) {
balance <<- balance + x

You call an RC method in the same way as you access a field:

a <- Account$new(balance = 100)
a$deposit(100)

a$balance

#> [1] 200

The final important argument to setRefClass() is contains. This is the name of the parent RC class to
inherit behaviour from. The following example creates a new type of bank account that returns an error

preventing the balance from going below 0.

NoOverdraft <- setRefClass("NoOverdraft”,
contains = "Account”,
methods = list(
withdraw = function(x) {
if (balance < x) stop(”"Not enough money")
balance <<- balance - x

)

accountJohn <- NoOverdraft$new(balance = 100)
accountJohn$deposit (50)

accountJohn$balance

[1] 150

accountJohn$withdraw(200)

#> Error in accountJohn$withdraw(200): Not enough money

http://adv-r.had.co.nz/OO-essentials.html

17/19

2015-10-09 OO field guide - Advanced R.

All reference classes eventually inherit from envRefClass. It provides useful methods like copy() (shown
above), callSuper() (to call the parent field), field() (to get the value of a field given its name), export()
(equivalent to as()), and show() (overridden to control printing). See the inheritance section in
setRefClass() for more details.

Recognising objects and methods

You can recognise RC objects because they are S4 objects (isS4(x)) that inherit from “refClass” (is(x,
"refClass"”)). pryr::otype() will return “RC”. RC methods are also S4 objects, with class refMethodDef .

Method dispatch

Method dispatch is very simple in RC because methods are associated with classes, not functions. When
you call x$f(), R will look for a method f in the class of x, then in its parent, then its parent’s parent, and so
on. From within a method, you can call the parent method directly with callSuper(...).

Exercises

1. Use a field function to prevent the account balance from being directly manipulated. (Hint: create a
“hidden” .balance field, and read the help for the fields argument in setRefClass().)

2. | claimed that there aren’t any RC classes in base R, but that was a bit of a simplification. Use
getClasses() and find which classes extend() from envRefClass. What are the classes used for?
(Hint: recall how to look up the documentation for a class.)

Picking a system

Three OO systems is a lot for one language, but for most R programming, S3 suffices. In R you usually
create fairly simple objects and methods for pre-existing generic functions like print(), summary(), and
plot(). S3 is well suited to this task, and the majority of OO code that | have written in R is S3. S3 is a little
quirky, but it gets the job done with a minimum of code.

If you are creating more complicated systems of interrelated objects, S4 may be more appropriate. A good
example is the Matrix package by Douglas Bates and Martin Maechler. It is designed to efficiently store and
compute with many different types of sparse matrices. As of version 1.1.3, it defines 102 classes and 20
generic functions. The package is well written and well commented, and the accompanying vignette
(vignette("Intro2Matrix”, package = "Matrix")) gives a good overview of the structure of the package.
S4 is also used extensively by Bioconductor packages, which need to model complicated interrelationships
between biological objects. Bioconductor provides many good resources (https://www.google.com/search?
g=bioconductor+s4) for learning S4. If you’ve mastered S3, S4 is relatively easy to pick up; the ideas are all
the same, it is just more formal, more strict, and more verbose.

If you’ve programmed in a mainstream OO language, RC will seem very natural. But because they can
introduce side effects through mutable state, they are harder to understand. For example, when you usually
call f(a, b) in R you can assume that a and b will not be modified. But if a and b are RC objects, they
might be modified in the place. Generally, when using RC objects you want to minimise side effects as much

http://adv-r.had.co.nz/OO-essentials.html 18/19

2015-10-09 OO field guide - Advanced R.

as possible, and use them only where mutable states are absolutely required. The majority of functions
should still be “functional”, and free of side effects. This makes code easier to reason about and easier for
other R programmers to understand.

Quiz answers

1. To determine the OO system of an object, you use a process of elimination. If !is.object(x), it’'s a
base object. If 1isS4(x), it's S3. If lis(x, "refClass"), it's S4; otherwise it's RC.

2. Use typeof () to determine the base class of an object.

3. A generic function calls specific methods depending on the class of it inputs. In S3 and S4 object
systems, methods belong to generic functions, not classes like in other programming languages.

4. S4 is more formal than S3, and supports multiple inheritance and multiple dispatch. RC objects have
reference semantics, and methods belong to classes, not functions.

© Hadley Wickham. Powered by jekyll (http://jekyllrb.com/), knitr (http://yihui.name/knitr/), and pandoc
(http://johnmacfarlane.net/pandoc/). Source available on github (https://github.com/hadley/adv-r/).

http://adv-r.had.co.nz/OO-essentials.html 19/19

