
This work is licensed under a
Creative Commons Attribution 4.0 International License.

Information Retrieval

Marco Kuhlmann
Department of Computer and Information Science

732A92/TDDE16 Text Mining (2021)

https://www.liu.se/
http://creativecommons.org/licenses/by/4.0/

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

Introduction to information retrieval

Information Retrieval

Information Retrieval (IR) is retrieving material (usually
documents) of an unstructured nature (usually text) that satisfies an
information need from within large collections (usually stored on
computers).

Manning, Raghavan, and Schütze (2008), p. 1

The basic search model

• To communicate her/his information need to an IR system, the
user formulates a search query.

• The objective of the IR system is to find documents in the
collection that ‘match’ the search query.

• A good IR system finds documents that are also relevant for the
user’s information need.
implications for evaluation

The basic search model

user in need

search query

search enginecollection

search results

Who is Professor Moriarty?

MoriartyWorld Wide Web

Google Search

Ad
ap

te
d

fro
m

 M
an

ni
ng

, R
ag

ha
va

n,
 a

nd
 S

ch
üt

ze
 (2

00
8)👨🏫

🔎

Are the results relevant?

Linear search

Which Sherlock Holmes short stories contain the word ‘Moriarty’?

• We could search through the texts exhaustively, for example by
using a tool such as grep.

• But what if we want to only match those stories that also contain
the word ‘Lestrade’?

• And what if, additionally, we want to exclude those stories that
contain the word ‘Adair’?

Boolean retrieval

• The Boolean retrieval model is perhaps the simplest and
historically the most widely used model in Information Retrieval.

• In this model, a query is a normal-form Boolean expression
whose atoms correspond to terms (‘words’), and is evaluated on
documents 𝑑. An atom 𝑡 is true for 𝑑 if and only if 𝑡 occurs in 𝑑.
Example: Moriarty AND Lestrade AND NOT Adair

• While modern IR uses other models, data structures, algorithms,
and terminology from Boolean retrieval are still relevant.

Term–document matrix

In the term–document matrix,

• the rows correspond to search terms 𝑡

• the columns correspond to documents 𝑑

• a cell (𝑡, 𝑑) is 1 if 𝑡 occurs in 𝑑, and 0 otherwise

Term–document matrix

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0 0 1 0 0 0

Adler 1 0 0 0 0 0

Lestrade 0 0 1 1 0 0

Moriarty 0 1 1 1 0 0

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0 0 1 0 0 0

Adler 1 0 0 0 0 0

Lestrade 0 0 1 1 0 0

Moriarty 0 1 1 1 0 0

Moriarty AND Lestrade AND NOT Adair

011100 AND 001100 AND NOT 001000

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0 0 1 0 0 0

Adler 1 0 0 0 0 0

Lestrade 0 0 1 1 0 0

Moriarty 0 1 1 1 0 0

Moriarty AND Lestrade AND NOT Adair

000100

Term–document matrices are sparse

The term–document matrix is not a practical data structure:

• Consider a medium-sized collection with 1,000,000 documents.

• Suppose that the search vocabulary has 500,000 distinct terms.

• This yields a matrix with 500,000,000,000 entries (62.5 GB).

Importantly though, almost all of the entries are zero!

Example due to Chris Manning

Inverted index

The inverted index is a key–value mapping in which

• the keys are search terms 𝑡

• the values are sorted lists of document identifiers (ids)

• the list for 𝑡 identifies those documents 𝑑 that contain 𝑡

The lists of document ids are traditionally called postings lists.

Inverted index

24Adair

Adler

Lestrade

Moriarty

01 03 07 44

04 10 24 25 50

23 24 25 34 44 45

…

Document #24 contains an occurrence of the term ‘Adair’.

postings list for ‘Moriarty’

Boolean query processing

• Given an inverted index as the basic data structure, Boolean
queries can be processed efficiently.

• Crucial in the processing of Boolean queries are algorithms for
‘merging’ the results from simpler queries.

Processing an AND query

Lestrade

Moriarty

04 10 24 25 50

23 24 25 34 44 45

…

Lestrade AND Moriarty

Merged

Processing an AND query

Lestrade

Moriarty

04 10 24 25 50

23 24 25 34 44 45

…

Lestrade AND Moriarty

Merged

Processing an AND query

Lestrade

Moriarty

04 10 24 25 50

23 24 25 34 44 45

…

Lestrade AND Moriarty

Merged

Processing an AND query

Lestrade

Moriarty

04 10 24 25 50

23 24 25 34 44 45

…

Lestrade AND Moriarty

24Merged

Processing an AND query

Lestrade

Moriarty

04 10 24 25 50

23 24 25 34 44 45

…

Lestrade AND Moriarty

Merged 2524

Important concepts

• search query

• relevance

• Boolean retrieval

• term

• term–document matrix

• inverted index

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

Index construction

Index construction

The major steps in index construction:

1. Collect the documents to be indexed.

2. Tokenize the text.

3. Do linguistic preprocessing of tokens.

4. Index the documents that each term occurs in.

Manning, Raghavan, and Schütze (2008), p. 6 ff.

Web scraping

• Web scraping is to automatically extract data from websites.

• Scraping a web page involves fetching it (often using a web
crawler), parsing it, and extracting data from it.
BeautifulSoup, Scrapy

• Web scraping may violate the terms of use of some websites, and
may also constitute copyright infringement.
Counter measures include the blocking of the scraper’s IP address!

https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org

Tokenization

raw = 'Apple is looking at buying U.K. startup for $1 billion.'

tokenize raw text based on whitespace
for token in raw.split():
 print(token)

tokenize using spaCy
import spacy
nlp = spacy.load('en_core_web_sm')
for token in nlp(raw):
 print(token.text)

sp
aC

y
10

1:
 E

ve
ry

th
in

g
yo

u
ne

ed
 to

 k
no

w

https://spacy.io/usage/spacy-101

Tokenization

An IR system is a software
system that provides access to
books , journals and other
documents ; stores and
manages those documents .
Web search engines are the
most visible IR applications .

An IR system is a software
system that provides access to
books, journals and other
documents; stores and
manages those documents.
Web search engines are the
most visible IR applications.

Before tokenization After tokenization

Stop words

• A stop word is a word that is frequent but does not contribute
much value for the application in question.
standard examples: a, the, and

• Stop words are application-specific – there is no single universal
list of stop words, and not all applications use such lists.
Stop word removal may even be disadvantageous!

Stop word removal

IR system software system
provides access books journals
documents stores manages
documents Web search
engines visible IR applications

An IR system is a software
system that provides access to
books , journals and other
documents ; stores and
manages those documents .
Web search engines are the
most visible IR applications .

Before stop word removal After removing stop words and punctuation

Lexemes and lemmas

• The term lexeme refers to a set of word forms that all share the
same fundamental meaning.
word forms run, runs, ran, running – lexeme run

• The term lemma refers to the particular word form that is
chosen, by convention, to represent a given lexeme.
what you would put into a lexicon

Lemmatization

IR system software system
provide access book
journal document store
manage document web search
engine visible IR application

IR system software system
provides access books journals
documents stores manages
documents Web search
engines visible IR applications

Before lemmatization After lemmatization

Inverted index

24term 1

term 2

term 3

term 4

01 03 07 44

04 10 24 25 50

23 24 25 34 44 45

…

Document #24 contains an occurrence of term 1.

Important concepts

• web scraping

• tokenization

• stop words

• lemmatization

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

Ranked retrieval

Reminder: Boolean retrieval

• A Boolean query is a normal-form Boolean expression whose
atoms correspond to terms, and is evaluated on documents 𝑑. An
atom 𝑡 is true for 𝑑 if and only if 𝑡 occurs in 𝑑.
Example: Moriarty AND Lestrade AND NOT Adair

• A system based on the Boolean retrieval model returns exactly
those documents for which the query evaluates to true – thus, a
document either matches the query, or it does not.

Problems with Boolean retrieval

• Not many users are capable of writing high-quality Boolean
queries, and many find the process too time-consuming.

• Feast or famine: Boolean queries tend to return either too many
results, or no results at all.

• Intuitively, whether or not a document ‘matches’ a search query
is not a Boolean property, but is gradual in nature.

Ranked retrieval

• A ranked retrieval system assigns scores to documents based on
how well they match a given search query.
There are many possible ways of scoring.

• Based on the score, a ranked retrieval system can return a list of
the top documents in the collection with respect to the query.

Term weighting

• The score of a document 𝑑 with respect to a query 𝑞 is the sum of
the weights of all terms 𝑡 that occur in both 𝑑 and 𝑞.

• Any specific way to assign weights to terms is called a term
weighting scheme.

TDPSF	ਆ
 � ǵਕó	ਆԻ
XFJHIU	ਕ ਆ

<latexit sha1_base64="WIQu+g50JQaQl72hwf7HSzo9O4g=">AAAFVHicjVTbbtNAEN1eAiVAaeGRlxVVpRQ5UZxUTasqUtVCBRKhhfQmxVG0Xk+SVdcXvOtCsPxFfA0vSMCH8MIDu3ZoqZOKrmRrPHPmzOyZ9doBZ0JWq99nZufmC3fuLtwr3n/wcPHR0vLjE+FHIYVj6nM/PLOJAM48OJZMcjgLQiCuzeHUPt/T8dMLCAXzvSM5CqDrkoHH+owSqVy9pZeWhE8yFtQPISk5Bv6whq3tprWNLRG5vVjiosU8XHKwRUmgognOMj4CGwxlUpIGdtZ6SyvVSjVdeNIwx8YKGq/D3vLcL8vxaeSCJyknQnTMaiC7MQkloxySohUJCAg9JwPoKNMjLohunO43wavK4+C+H6rHkzj1/psRE1eIkWsrpEvkUORj2jkt1olkf7MbMy+IJHg0K9SPOJY+1uJhh4VAJR8pg9CQqV4xHZKQUKkkvlZFNyYCoNd3oiuWhRxxaL5uHxi2z52rz24ceYz6DpTT/oqWAOkS5mmqTnEV410F39cbbuL4OW6DyzRBYhQxbrPPsA9ERiEIHVYujGPtVV/lzcq6gQ8C1S7hY99mmnaFUZCyWc+jTDMHM+tlc6uyNYHbyuMUqJxHNWqJAqXIN2xw2ewRnGnX28i1lYq6+5bv+UJpBuo8HnCnrRVSad24xTx1avFh6P+VRw4zef4nwYaBx9JlHC09iSPmjQyc0uuAcrXVVAOZvXNb2shknGTZI4GcxnKDwpME72EQcRLeguNS/kmSdmQPb8OgB9OoTWN4wUSQQzdq5ZuQU2vp8V6NqZUdYw7SugDatPQv2VdXhZm/GCaNk1rFrFdq79ZXdnbHl8YCeoqeoRIyUQPtoFfoEB0jir6gr+gH+jn/bf53Ya5QyKCzM+OcJ+jaKiz+AQ4zo0o=</latexit>

Term frequency

• Consider the query ‘Moriarty’.

• Several Sherlock Holmes stories contain the term ‘Moriarty’. We
would like to rank those stories that contain many occurrences
higher than stories that contain only few occurrences.

• The number of times a term 𝑡 occurs in a document 𝑑 is called
the term frequency of 𝑡 in 𝑑, and is denoted by tf(𝑡, 𝑑).
absolute frequency, count

Background information about Moriarty

Moriarty’s first and only appearance occurred in The Adventure of
the Final Problem [no. 23] […].

Holmes mentions Moriarty reminiscently in five other stories:
The Adventure of the Empty House [no. 24], The Adventure of the
Norwood Builder [no. 25], The Adventure of the Missing Three-
Quarter [no. 34], The Adventure of the Illustrious Client [no. 45],
and His Last Bow [no. 44].

Source: Wikipedia (numbering by me)

https://en.wikipedia.org/wiki/Professor_Moriarty

Term frequency

Moriarty

23 24 25 34 44 45

23 24 25 34 44 45

20 15 1 1 1 1

expected

retrieved

Moriarty

A problem with term frequency

• Is a document with 20 occurrences of ‘Moriarty’ really 20 times
more relevant than a document with 1 occurrence?

• Intuitively, relevance is not a linear function of term frequency.

• A standard solution to this problem is to down-scale frequency
using the log function. This is called log-frequency weighting.

XFJHIU	ਕ ਆ
 � ʲ� � MPH��UG	ਕ ਆ
 JG UG	ਕ ਆ
 � �� PUIFSXJTF
<latexit sha1_base64="zB7O0OTVdOGwqPOLD4kRbVXEYNY=">AAAFnHicjVRdb9MwFE0ZhVG+NnhCSMhaNzSgrZJuWreHommbJhCUDbovqakqx7ltrTlOFDsbJcpP4AfyO3jgFbvJNpZ2YpYS2eeee3x9bmInYFRI0/xVuDNzt3jv/uyD0sNHj588nZt/diT8KCRwSHzmhycOFsAoh0NJJYOTIATsOQyOndNtHT8+g1BQnx/IUQBdDw847VOCpYJ6cz9tCd9lfA50MJTJsqwg9w1qItuBAeUxUcoiQRZ6h1Ie8wdJL7bMJFvL/kXO6wyhfbSYj71H5qLKsJF5SfPlEMJzKkDhwN1sp95c2ayZ44EmJ1Y2KRvZ2O/Nz/yxXZ9EHnBJGBaiY5mB7MY4lJQwSEp2JCDA5BQPoKOmHHsguvHYtwQtKcRFfT9UD5dojP6bEWNPiJHnKKaH5VDkYxqcFutEsr/ejSkPIgmcpBv1I4akj3QTkEtDIJKN1ASTkKpaERniEBOpWnVtF12YCIBcP4nesSrkiEHzY3uv4vjMvVp244hT4rtQHddXsgVID1OupTqlJYS2FH1XH7iJ4reoDR7VAkmlhFCb/oBdwDIKQeiwghCKNapW1fXaagXtBapczDJsfZx2xVGUqrWSZ1lWjmatVK2N2sYEbyPPU6RqntWoJ4o0Zn6mg8tiD+BEQ18iz1Eu6upbPveF8gxcJcHctnZIpXXjFuXq60f7oX9hjxym9vzPgrUKyqxLNVq6EweUjypoLK8DCmqrrgYyfeeOtJbaOKmyjQM5TeUGhycFvsEgYji8hcal/ZMi7cgZ3kZBN6ZRn6awQ0WQYzfq1ZuYU/fS7b1qUyv9jBlI+wxI09a/ZF9dFVb+YpicHNVr1kqt/nW1vLmVXRqzxktjwVg2LKNhbBofjH3j0CDG78KLwkKhXHxV3Cl+KrZS6p1ClvPcuDaKR38B4JK7AQ==</latexit>

Another problem with term frequency

Moriarty Holmes

23 24 25 34 44 45

28 36 48 22 25 52

0 0 0 0 1 0

87 80 72 68 64 63

expected

retrieved

Moriarty

Holmes

Document frequency

• Consider the query ‘Moriarty Holmes’.

• All Sherlock Holmes stories contain many occurrences of the
term ‘Holmes’. We would like to rank those few stories that also
contain the term ‘Moriarty’ higher than all of them.

• To implement this idea, we can let the weight of a term grow
proportionally to the inverse of the fraction of documents in the
collection which contain that term.

Inverse document frequency

• Let 𝑁 be the total number of documents in the collection.

• The number of documents that contain a term 𝑡 is called the
document frequency of 𝑡, and is denoted by df(𝑡).

• The multiplicative inverse of the document frequency is called
the inverse document frequency, and is denoted by idf(𝑡):

JEG	ਕ
 � MPH ৶
EG	ਕ

<latexit sha1_base64="X4/C/HHL4ZnoVXzIhMLqWIT5gbE=">AAAFQHicjVRdb9MwFPW2AqN8bfDIi8U0aaCmarpp3R4qTRuaQKJbofuSmqpynJvWmvOh2JkoUX4Hv4YXHuA38A94Qzwh8YSdlJWlnZilRNfnHh9fn5vYDjkTslb7Nje/ULp1+87i3fK9+w8ePlpafnwigjiicEwDHkRnNhHAmQ/HkkkOZ2EExLM5nNrnezp/egGRYIF/JEch9Dwy8JnLKJEK6i+ZloT3MmGOm67J57iJ8zkPBim23IjQ5CBNciynpP2llVq1lg08HZjjYAWNR7u/vPDLcgIae+BLyokQXbMWyl5CIskoh7RsxQJCQs/JALoq9IkHopdkZ0vxqkIc7AaRenyJM/TfFQnxhBh5tmJ6RA5FMafBWbluLN2tXsL8MJbg03wjN+ZYBlgbhR0WAZV8pAJCI6ZqxXRIlCNS2XllF12YCIFePYne0RByxKH5unNYsQPuTKa9JPYZDRwwsvrKlgDpEeZrqW55FeNdRd/XB27i5AXugMe0QFopY9xhH2AfiIwjEDqtIIwTjaqZsVXdqODDUJVL+BjbypZNOIpimOtFlmkWaOa6YW5Xt6d420WeIhlFVqOeKlLGfMMGl8UewZmGDmLPVi7q6luBHwjlGThKgjsd7ZBa1ktazFdfKG5HwV975DC3538WbFbw2Lpco6U7ccT8UQVn8jqhoI7qaijzd+FIm7mN0yp7JJSzVK5xeFrgHQxiTqIbaFzaPy3Sie3hTRR0Yxr1WQovmQgL7EbduI45cy/d3kmbWvlnzEFaF0Cblv4lXXVVmMWLYTo4qVfN9Wr97cbKzu740lhET9EztIZM1EA76BVqo2NE0Uf0CX1BX0ufS99LP0o/c+r83HjNE3RllH7/AXaCoO8=</latexit>

Term frequency–inverse document frequency

The tf–idf weight of a term 𝑡 in a document 𝑑 is defined as

where 𝑁 denotes the number of documents in the collection.

UGoJEG	ਕ ਆ
 � UG	ਕ ਆ
 ď MPH ৶
EG	ਕ

<latexit sha1_base64="ewp59O48rFqoq5g7rgHM3QqMKLE=">AAAFsXicjVRrb9owFDXt2Dr2ateP+2KtqrROgAhUhWpCqtqp2qTRx+hrAtQ5zg1YdR6KnWos4oful+zrrgMrI1CtlmJdHx8fX5/r2A6lULpS+ZVbWn6Uf/xk5Wnh2fMXL1+trr2+UEEccTjngQyiK5spkMKHcy20hKswAubZEi7tmwMzf3kLkRKBf6aHIfQ81veFKzjTCAWrp6RLNAHyA/sEP5euE0Ec4pIReYfjIqE42sK+Sz6QZtrT7JoFXI5RgNgsVyLWR7ZBXRIRhryEHCGSzPCm+2+R0fXqRqVcSRudD6xJsEEm7eR6bfl31wl47IGvuWRKdaxKqHsJi7TgEkaFbqwgZPyG9aGDoc88UL0kNXNENxFxqBtE+Pmapui/KxLmKTX0bGR6TA9Uds6Ai+Y6sXYbvUT4YazB5+ON3FhSHVBTGeqICLiWQwwYjwTmSvmARYxrrN/MLiYxFQKfPYnZsaT0UELzc/u4aAfSmQ57SewLHjhQSvMrdBVojwnfSHUKm5TuI/3QHLhJk/e0DZ4wAqNigdK2+AmHwHQcgTLTCFGaGBRHpUZ5u0iPQ0yXyQnWSJdNOUgpWbUsy7IyNKtWsnbLu3O83SwPSaUsq14dISllfhH9u2TP4MpAR7Fno4sm+xZee4WegYMS0mkbh3BZL2kJH38JehIFf+3Rg7E9/7Ngp0gn1o01WqYSZ8IfFmkqbyYQamNVQz3uM0faGds4r3LAQr1I5R6H5wW+Qj+WLHqAxp398yLt2B48RMEUpl5dpPBRqDDDrldL9zEX7mXKOy1Ta3yNJejuLfBm1/ySLj4VVvZhmA8uqmWrVq6ebm/s7U8ejRXyhrzFB8cidbJHPpETck54biVXztVzjXwt/y3/PW+PqUu5yZp1MtPyN38Alwqmug==</latexit>

Variations of the tf–idf weighting scheme

In scikit-learn, the tf–idf weight is computed as

where 𝑁 denotes the number of documents in the collection.

UGoJEG	ਕ ਆ
 � UG	ਕ ਆ
 ď ʕMPH � � ৶� � EG	ਕ
 � �ʣ
<latexit sha1_base64="+n+NJIe1GrDeuvQR697/b8noGEM=">AAAF3XicjVRbb9MwFHYZhVFuG3vkxWKaxFhTNd20bkKVpg1NINFt0N1EU02O46TWnItiZ6JEfeQN8cpv45fwynFS1jXtxFzFPf7Odz6fnBPbjgSXql7/Xbo3d7/84OH8o8rjJ0+fPV9YfHEqwySm7ISGIozPbSKZ4AE7UVwJdh7FjPi2YGf25Z72n12xWPIwOFaDiPV84gXc5ZQogMIFD1lIIYa+wpzC4+IlxJGDXDREr2FdRRhWqzBb6C1qZTMuxszgUrBCwLS9C4oe/ASwJmMFcDyI1qiLYkQgLkUmWkMHgObWTf44r1X4XwP/Tf0YrV4sLNdr9WzgacMcGctoNI4uFuf+WE5IE58FigoiZdesR6qXklhxKtiwYiWSRYReEo91wQyIz2QvzQo/xCuAONgNY3gChTP0ZkRKfCkHvg1Mn6i+LPo0OMvXTZS71Ut5ECWKBTTfyE0EViHWXcQOjxlVYgAGoTGHXDHtk5hQBb2e2EUnJiNGJ99E72hINRCs9aFzWLVD4YyXvTQJOA0dZmT5VSzJlE94oKW6lRWMd4G+r1+4hdM3uMN8rgWG1QrGHf6N7TOikphJ7QYI41SjsDK2ahtVfBhBukSMsK0sbMwBimGuF1mmWaCZ64a5Xdue4m0XeUAyiqxmYwikjPmRe9fJHrNzDR0kvg1V1Nm34YhIqBlzQEI4HV0hCOulbR7A8cFHcfivPKqfl+d/Jdis4lHpco227sQxDwZVnMlrB0Ad6Gqk8rnwSpt5GadV9kikZqncUuFpgc/MSwSJ76BxXf5pkU5i9++ioBvTbMxSeMdlVGA3G8ZtzJl76faO29TOP2PBlHXFaMvSR9KFq8IsXgzTxmmjZq7XGp82lnd2R5fGPHqJXsElZKIm2kHv0RE6QbS0UfpSoiWnfFH+Xv5R/plT75VGMUtoYpR//QVWUa6J</latexit>

Important concepts

• ranked retrieval

• term weighting scheme

• term frequency

• document frequency

• inverse document frequency

• tf–idf term weighting

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

The vector space model

Reminder: Term–document matrix

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0 0 1 0 0 0

Adler 1 0 0 0 0 0

Lestrade 0 0 1 1 0 0

Moriarty 0 1 1 1 0 0

Document representations

• Documents as sets of terms

In Boolean retrieval, the only relevant information is whether or
not a term is present in a document.

• Documents as bags of terms

In ranked retrieval based on term frequency, the only relevant
information is how often a term is present in a document.
bag = multiset = set with counts

Term–document matrix with term frequency values

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0 0 14 0 0 0

Adler 13 0 0 0 0 0

Lestrade 0 0 10 51 0 0

Moriarty 0 20 15 1 0 0

Term–document matrix with tf–idf values

Scandal in
Bohemia

Final
problem

Empty
house

Norwood
builder

Dancing
men

Retired
colourman

Adair 0,0000 0,0000 0,0692 0,0000 0,0000 0,0000

Adler 0,0531 0,0000 0,0000 0,0000 0,0000 0,0000

Lestrade 0,0000 0,0000 0,0291 0,1424 0,0000 0,0000

Moriarty 0,0000 0,0845 0,0528 0,0034 0,0000 0,0000

The vector space model – idea 1

Represent documents as vectors in a high-dimensional space:

• The dimensions (axes) of the space correspond to the terms in
the vocabulary (potentially relevant terms).
could be set of all words in the collection, set of most frequent words, …

• The values of the vector components depend on the term
weighting scheme: Boolean values, counts, tf–idf values, …
in scikit-learn: CountVectorizer, TfidfVectorizer

The vector space model – idea 2

To rank documents in the vector space model,

• we represent the query as a vector in the same space as the
documents in the collection

• we compute the score of a candidate document as the similarity
between its document vector and the query vector
similarity = proximity in the vector space

Euclidean distance

‘Moriarty Holmes’

d1

d2

Moriarty

Holmes

Ex
am

pl
e

ad
ap

te
d

fro
m

 C
hr

is
 M

an
ni

ng

distance to query: 3.16

distance to query: 3.16

A problem with Euclidean distance

‘Moriarty Holmes’

d1

d2

Moriarty

Holmes

d

Ex
am

pl
e

ad
ap

te
d

fro
m

 C
hr

is
 M

an
ni

ng

distance to query: 3.16

distance to query: 4.24

distance to query: 3.16

From distance to angles

• Euclidean distance is unable to capture similarity of term
distributions, as it also varies with the length of the vectors.
Vectors with similar distributions can have very different lengths.

• Intuitively, we should instead rank documents based on the angle
between document and query vector.

• It turns out that using angle instead of distance also has
computational benefits.

The dot product

𝑣1 𝑣2 𝑤1 𝑤2

+2 +2 +2 +1

𝑣1 𝑣2 𝑤1 𝑤2

+2 +2 −2 +2

𝑣1 𝑣2 𝑤1 𝑤2

+2 +2 −2 −1

ੋ ď ੌ � k�ੋ ď ੌ � ÷�ੋ ď ੌ � ��

Cosine similarity

• Like Euclidean distance, the dot product is sensitive to length. To
fix this, we can normalize each vector to unit length.

• This length-normalized dot product is cosine similarity:

• Cosine similarity ranges from −1 (opposite) to +1 (identical).

DPT	ੋ ੌ
 � ੋ]ੋ] ď ੌ]ੌ] � ੋ ď ੌ]ੋ]]ੌ] � öਆਊ�� ਗਊਘਊƊöਆਊ�� ਗ�ਊƊöਆਊ�� ਘ�ਊ

A problem with Euclidean distance

‘Moriarty Holmes’

d1

d2

Moriarty

Holmes

d

Ex
am

pl
e

ad
ap

te
d

fro
m

 C
hr

is
 M

an
ni

ng

similarity with query: 0.71

similarity with query: 1

similarity with query: 0.71

Computational properties of cosine similarity

• To compute the cosine similarity between two vectors, we only
need to consider the non-zero dimensions.
Recall that term–document matrices are very sparse.

• Like other operations based on matrix multiplication, cosine
similarity can be computed efficiently on modern GPUs.

Important concepts

• Euclidean distance

• dot product

• cosine similarity

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

Evaluation of information retrieval systems

Evaluation of IR systems

To evaluate an IR system we need:

• a document collection

• a collection of queries

• a gold-standard relevance judgement

Producing the relevance judgement

<num> Number: 508

<title> hair loss is a symptom of what diseases

<desc> Description:

Find diseases for which hair loss is a symptom.

<narr> Narrative:

A document is relevant if it positively connects the loss of head hair in humans
with a specific disease. In this context, “thinning hair” and “hair loss” are
synonymous. Loss of body and/or facial hair is irrelevant, as is hair loss caused
by drug therapy.

Sa
m

pl
e

qu
er

y
fro

m
 T

RE
C

Gold-standard relevance judgement

query document 1 document 2 document 3

505 ✔ ✔ ✘

506 ✘ ✘ ✘

507 ✔ ✘ ✘

508 ✘ ✘ ✔

509 ✔ ✔ ✘

510 ✔ ✔ ✔

511 ✘ ✘ ✘

Precision and recall for Boolean retrieval

true
positives

false
negatives

false
positives

true
negatives

relevant retrieved

|relevant ∩ retrieved|
|retrieved|

P =
|relevant ∩ retrieved|

|relevant|
R =

F1-measure

A good system should balance between precision and recall.
The F1-measure is the harmonic mean of the two values:

2 · precision · recall
precision + recall

F1 =

Evaluation of ranked retrieval

• Intuition: A system for ranked retrieval is good if the relevant
documents rank high and the irrelevant documents rank low.

• We can generalize the evaluation of Boolean retrieval to ranked
retrieval by computing precision and recall at different ranks.

• In practice, recall is hard to evaluate, so evaluation tends to focus
on precision.
Remember that recall requires us to know all relevant documents.

rank document relevant?

1 191 ✔

2 153 ✔

3 28 ✔

4 198 ✔

5 61 ✔

6 174 ✘

7 178 ✘

8 145 ✘

9 183 ✘

10 172 ✘

rank document relevant?

1 191 ✔

2 174 ✘

3 153 ✔

4 178 ✘

5 28 ✔

6 198 ✔

7 145 ✘

8 61 ✔

9 183 ✘

10 172 ✘

best worse

Mean Average Precision (MAP)

• For each query, compute the precision up to each rank where a
relevant document was returned.
up to a fixed maximal rank, say 𝑘 = 100

• Take the average of the query-specific precision values.

• Take the average of the query-specific averages, for all queries in
the collection used for the evaluation.
macro-averaging: each query counts equally

rank document relevant precision @ rank

1 191 ✔ 1/1

2 153 ✔ 2/2

3 28 ✔ 3/3

4 198 ✔ 4/4

5 61 ✔ 5/5

6 174 ✘

7 178 ✘

8 145 ✘

9 183 ✘

10 172 ✘

�� � �� � �� � �� � ��� � ����
<latexit sha1_base64="tzUsMlzBEm/Wf6eo+xmK8ijZGmY=">AAAFanicjVRbb9MwFPYuhREuu/CE9mIxJiFoqqTd1u6h0sTQBBJlg+4mtdXkOG5rzbkodiaVKD+On8Ev4IUHeOKV46R0LO3ErJPG55zPn4+/k9oJBZfKsr7NzS8slu7dX3pgPHz0+MnyyuraqQziiLITGoggOneIZIL77ERxJdh5GDHiOYKdOZf7On92xSLJA/9YjULW88jA531OiYLQxUqn248ITTaN/G2nYPg1zr1qCjbxainYxNtKwSbedgpmpImxbaRG07CTSmpZFysbVsXKBp6e2OPJBhqPo4vVhd9dN6Cxx3xFBZGyY1uh6iUkUpwKlhrdWLKQ0EsyYB2Y+sRjspdkKqR4EyIu7gcRPL7CWfTfFQnxpBx5DiA9ooaymNPBWblOrPqNXsL9MFbMp/lG/VhgFWAtKXZ5xKgSI5gQGnGoFdMhAVkUCH9jF12YDBm9eRK9oynVSLDm+/Zh2QmEe+32ktjnNHCZmdVndCVTHuG+puoYmxi/AfiBPnATJ69wm3lcE6RlA+M2/8IOGFFxxKROQwjjREfBMxuVrTI+DKFcIsaxRrbsGgMQ064VUbZdgNk1096t7E7hdos4AJlFVL2aAihDfuCDSbHH7FyHPsaeAyrq6luBH0jQjLlAIdy2VgiW9ZIW9+FbxkdR8FceNczl+Z8EO2U8li7naOlOHHN/VMYZvU5AqA1dDVX+WzjSTi7jNMs+CdUsllsUnib4zAaxINEdOCbyT5O0Y2d4FwbdmHp1FsNbLsMCul41b0PO3Eu397pNrfwzFkx1rxhtdvVfsg9XhV28GKYnp9WKXatUP21t7DXGl8YSWkfP0UtkozraQ+/QETpBFH1F39FP9GvxR2mt9Ky0nkPn58ZrnqIbo/TiD4BmqUo=</latexit>

average precision
for this query:

rank document relevant precision @ rank

1 191 ✔ 1/1

2 174 ✘

3 153 ✔ 2/3

4 178 ✘

5 28 ✔ 3/5

6 198 ✔ 4/6

7 145 ✘

8 61 ✔ 5/8

9 183 ✘

10 172 ✘

�� � �� � �� � �� � ��� Ă ����
<latexit sha1_base64="stqvxYCPaDctDeFMnxMUL1TFVAo=">AAAFcHicjVRbb9MwFPYuhRFuG7wg8YBhmoRGWzXttnYPkyaGJpAoG3SXSm01Oc5pa825KHYmipXfx2/gR/DCA3vFTsrK0k7MyuVcPn8+/k5iJ+RMyErlx9z8wmLhzt2le9b9Bw8fPV5eeXIigjiicEwDHkRthwjgzIdjySSHdhgB8RwOp875nsmfXkAkWOAfyVEIPY8MfNZnlEgdOlsm3X5EqFqzsred6Au/wZlXTVRt4tUStTnxNhK1NfE2E9VIrERZm1ZidUkYRsFXq6LKSd0+W16tlCvpwNOGPTZW0Xgcnq0sXHbdgMYe+JJyIkTHroSyp0gkGeWg+WMBIaHnZAAdbfrEA9FTqRYJXtMRF/eDSN++xGn03xmKeEKMPEcjPSKHIp8zwVm5Tiz7jZ5ifhhL8Gm2UD/mWAbYCItdFgGVfKQNQiOma8V0SLQ4Ust/bRVTmAiBXt+JWbEk5IjDzofWQdEJuDtxeyr2GQ1cKKX1WV0B0iPMN1Qdaw3jtxq+bza8g9U6boHHDEFStDBusW+wD0TGEQiT1iGMlYlqr9QobxTxQajLJXwca6TTJhgNKdm1PMq2czC7VrK3y9tTuO08ToNKeVS9mmhQivzIBlfFHkHbhD7FnqNVNNU3Az8QWjNwNQV3W0YhPa2nmszXXzQ+jIK/8shhJs//JNgq4rF0GUfTdOKI+aMiTulNQodauquhzJ65LW1lMk6z7JFQzmK5QeFpgi8wiDmJbsFxJf80SSt2hrdhMI2pV2cxvGMizKHr1dJNyJlrmfZO2tTMPmMOsnsBdKdrfsm+Pirs/MEwbZxUy3atXP28sbrbGB8aS+g5eoVeIxvV0S56jw7RMaLoO/qJfqPLxV+FZ4UXhZcZdH5uPOcpujYK638AMf6sTg==</latexit>

average precision
for this query:

Important concepts

• precision, recall, F1

• mean average precision (MAP)

This lecture

• Introduction to information retrieval

• Index construction

• Ranked retrieval

• The vector space model

• Evaluation of information retrieval systems

• Introduction to the lab

Introduction to the lab

Description of lab 1

• Your task in this lab is to implement the core of a minimalistic
search engine for apps from the Google Play Store.

• More specifically, you will implement ranked search over a
collection of app descriptions scraped from the Store.
tf–idf vectorization, cosine similarity

• You are allowed to use a full set of Python libraries, including
pandas, spaCy, and scikit-learn.

https://play.google.com/store/apps?hl=en
https://pandas.pydata.org
https://spacy.io
https://scikit-learn.org/stable/

