# Meeting 9: Bayesian (decision) networks



# Bayesian (belief) networks

A *Bayesian network* is a <u>connected directed acyclic graph</u> (DAG) in which

- the nodes (vertices) represent *random variables*
- the links (edges, arcs) represent direct *relevance* relationships among variables



This small network has two nodes representing the random variable X and Y.

The directed link gives a relevance relationship between the two variables that means  $Pr(Y = y | X = x, I) \neq Pr(Y = y | I)$ 



This network has three nodes representing the random variables *X*, *Y* and *Z*.

The directed links give relevance relationships that means  $Pr(Y = y | X = x, I) \neq Pr(Y = y | I)$   $Pr(Z = z | X = x, I) \neq Pr(Z = z | I)$ but also (as will be seen below) Pr(Z = z | Y = y, X = x, I) = Pr(Z = z | X = x, I) Probability "tables"

Each node represents a random variable.

This random variable has *either* assigned probabilities (nominal scale or discrete) or an assigned probability density function (continuous scale) for its states.

For a node that is *solely* a parent node:

The assigned probabilities or density function are conditional on background information only (may be expressed as unconditional or *prior* probabilities)

For a node that is a child node (solely or joint parent/child):

The assigned probabilities or density function are conditional on the states of its parent nodes (and on background information).

Example:

Χ

Y

X has the states  $x_1$  and  $x_2$ 

Probability tables

| X                     | Probabilities                 |
|-----------------------|-------------------------------|
| <i>x</i> <sub>1</sub> | $\Pr\left(X=x_1\mid I\right)$ |
| <i>x</i> <sub>2</sub> | $\Pr\left(X=x_2\mid I\right)$ |

*Y* has the states  $y_1$  and  $y_2$ 

|            |                       | Probabilities               |                             |  |
|------------|-----------------------|-----------------------------|-----------------------------|--|
| <i>X:</i>  |                       | <i>x</i> <sub>1</sub>       | <i>x</i> <sub>2</sub>       |  |
| <i>Y</i> : | <i>y</i> <sub>1</sub> | Pr $(Y = y_1   X = x_1, I)$ | Pr $(Y = y_1   X = x_2, I)$ |  |
|            | <i>y</i> <sub>2</sub> | Pr $(Y = y_2   X = x_1, I)$ | Pr $(Y = y_2   X = x_2, I)$ |  |

*Example* Dyes on banknotes (from previous lectures)



 $\overline{B}$ : "Result is negative"

|                      |                | 1 roodonnies |                |
|----------------------|----------------|--------------|----------------|
| A?:                  |                | A            | $\overline{A}$ |
| <i>B</i> ?: <i>B</i> |                | 0.99         | 0.02           |
|                      | $\overline{B}$ | 0.01         | 0.98           |

0.001

0.999

# Software

- Hugin (several types of commercial licenses available), Hugin Lite as demo version free of charge
- GeNIe (<u>https://dslpitt.org/dsl/genie\_smile.html</u>) used to be easy download freeware, but today it is more complicated
- Agena Risk (https://www.agenarisk.com/), trial version can be downloaded, otherwise commercial license needed
- ...several other

HUGINEXPERT

### Hugin (www.hugin.com)

PRODUCTS v SOLUTIONS v INDUSTRY TECHNOLOGY RESOURCES ABOUT v CONTACT Q

# Capitalize on Uncertainty Using Bayesian Network Technology

Bayesian networks combine sophisticated algorithms with modern computing power to uncover new insight and model complex risk and decision problems where sound analysis is needed, but where uncertainty exists. For the best possible predictions - use HUGIN software.

READ MORE

GET FREE DEMO

#### HUGINEXPERT

PRODUCTS ~ SOLUTIONS ~ INDUSTRY TECHNOLOGY RESOURCES ABOUT ~ CONTACT Q

# **Download the FREE HUGIN Lite demo**

#### How to get started with HUGIN software

The best way to learn more about the HUGIN technology is to try it yourself. Download our free HUGIN Lite demo, a limited version of HUGIN Developer / Researcher.

The HUGIN Decision Engine in HUGIN Lite is available with interfaces for four different programming environments: C, C++, .NET, Java, and as an ActiveX-Server for Visual Basic.

It is prohibited to use the free HUGIN Lite for any other purpose than the demonstration of capabilities and proof of concept.

Go to our Technology Site to learn more about HUGIN Bayesian network technology.



HUGIN app is now available on Google Play and App Store





Fields marked with an **\*** are required

| N  | a | m | e | * |
|----|---|---|---|---|
| IN | a | m | e |   |

Organisation

Address

City

| Postal Code            |              |
|------------------------|--------------|
|                        |              |
| Country                |              |
| Denmark                | $\checkmark$ |
| Email *                |              |
|                        |              |
| Use of demo            |              |
| Industrial application |              |
| Learn Hugin            |              |
| Surfing around         |              |
|                        |              |

DOWNLOAD

#### Use of demo

| Industrial application                       |  |
|----------------------------------------------|--|
| Medical application<br>Financial application |  |
| Research<br>Education                        |  |
| Just for fun                                 |  |
| Other                                        |  |

DOWNLOAD



Dear Anders Nordgaard,

Thank you for downloading the HUGIN Lite Evaluation.

The registration key required for installing this product and the links for download this product have already been sent to your email. Please check your email to download it.

Thank you.

Thank you for downloading the HUGIN Lite demo.

The registration key required for installing this product is:

- Email: <u>anders.nordgaard@liu.se</u>
- Key: 2384

#### Download URLs:

Information to be used during installation

#### 32-bit:

http://download.hugin.com/pub/Licenses/8.8/HuginLiteR88.msi

#### 64-bit:

http://download.hugin.com/pub/Licenses/8.8/HuginLiteR88(x64).msi

We hope you will find the product useful. If you need a quote for the full license, please contact sales@hugin.com

Best regards, HUGIN EXPERT A/S info@hugin.com





| 🛃 Hugin Lite 8.8 Setup                                                              |                                                  |                                                                                                                  |                                   |
|-------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| End-User License Agreement<br>Please read the following license agreement carefully | HUGINEXPERT<br>The leading decision support tool |                                                                                                                  |                                   |
| It is prohibited to use the free HUGIN Lite for any of to evaluate the technology.  | other purpose than                               |                                                                                                                  |                                   |
| I accept the terms in the License Agreement                                         | ext Cancel 3                                     | Hugin Lite 8.8 Setup                                                                                             |                                   |
|                                                                                     |                                                  | Registration Information<br>Please type email used for registration and the registration code received loading d | NEXPERT<br>lectision support tool |
|                                                                                     | 91<br>7<br>18<br>8<br>F                          | Email address:<br>(enter email used for registration)                                                            |                                   |
| Enter information from you<br>email from Hugin Expert                               | r                                                | Registration Code:                                                                                               | /                                 |
|                                                                                     | 11<br>74<br>74                                   | Back Next                                                                                                        | Cancel                            |

| Hugin Lite 8.8 Setup  Destination Folder  Click Next to install to the default folder or click Change to choose another acting decision apport tool  Install Hugin Lite 8.8 to:  C:\Program Files (x86)\Hugin Expert\Hugin Lite 8.8\  Change | Use this or your ov<br>folder                                                                                          | wn preferred             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Back Next Cancel                                                                                                                                                                                                                             | Hugin Lite 8.8 Setup                                                                                                   |                          |
|                                                                                                                                                                                                                                              | Click Install to begin the installation. Click Back to revi<br>installation settings. Click Cancel to exit the wizard. | ew or change any of your |

#### Installation takes less than one minute on most computers.



## Upon launching (or opening):



# Example to work with

Let A be a random node with states

 $A_1 =$  "Willie is a cat"  $A_2 =$  "Willie is a parrot



Let B be a random node with states

 $B_1$  = "Willie has four legs"  $B_2$  = "Willie has two legs"

Let C be a random node with states

 $C_1$  = "Willie has a beak" (*bill*, *nib*)  $C_2$  = "Willie has no beak"



### Divergent connection



Given B being equal to  $B_1$  the conditional probability of  $C_1$  is different (lower) than the conditional probability of  $C_1$  given B is equal to  $B_2$ .

Hence, B is relevant for C and vice versa.

However, if A is given to be  $A_2$ , i.e. Willie is a parrot, B and C are no longer relevant for each other if we reasonably assume that the number of legs a parrot has cannot affect whether he has a beak or not.

# Adding a chance node

| St Hugin Lite 8.8                                        |                                    |
|----------------------------------------------------------|------------------------------------|
| File Data Edit View Network Options Windows Wizards Help |                                    |
| 检 ☞ 🖬 🐚 🌡 🛍 🗙 🖃 🎞 🛸 🛛 ?                                  |                                    |
| 🔄 Class: unnamed1                                        |                                    |
| ▝▞▝▋▋▐▖़♀♀ヾ◇◇◇□◎  ◇ + - ▦ ▙ ∜                            | n 🔻                                |
|                                                          | - Click here<br>then<br>Click here |
| a) Class: unnamed 1                                      |                                    |
| ☞ ◢ 单 ▶○○ ✔ ◇ ◇ ○ □ ■                                    |                                    |
| C1                                                       |                                    |





# Enter a unique name (identifier)

(One single word starting with a letter and otherwise comprised by letters, digits and underscores only)

Enter a label (Free format)

# ... for instance...

| C1               |               | 10.00                  | × |
|------------------|---------------|------------------------|---|
| Node S           | tates Table A | ttributes              |   |
| <b>\$</b>        | Name:         | A                      |   |
| <b>*</b>         | Label:        | Type of animal?        | * |
|                  | Type:         | Labelled               | - |
|                  | Group:        | No Group               | - |
|                  | Interface:    | Input Output           |   |
|                  | Input Panel:  | include in panel       |   |
|                  | Size:         | Width = 80 Height = 40 |   |
| Node Description |               |                        |   |
| OK Cancel Apply  |               |                        |   |
|                  |               |                        |   |

A<sub>1</sub> = "Willie is a cat" A<sub>2</sub> = "Willie is a parrot

|            | Type of animal           Node         States         Table         Attributes                                                                                                                                                                                                                                                                                                                                                                                                                      | ×           |                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|
| Type of an | Node       States       Table       Attributes         Name:       A       Type of animal         Label:       Type of animal       Type:         Label:       Type:       Labelled         Group:       No Group         Input       Input         Interface:       Output         Input Panel:       include in panel         Size:       Width = 80         Node Description       Description         Descriptions are available on SHIFT + Right Mouse Bu         OK       Cancel       Apply | Height = 40 | Select tab "States" |

| Type of animal                                            | Two states per default                                                   |
|-----------------------------------------------------------|--------------------------------------------------------------------------|
| State 1 Up<br>State 2 Down                                | State names can be altered (double-<br>click)<br>New states can be added |
| Add   State Description     OK     Cancel     Apply       | for instance                                                             |
| A <sub>1</sub> = "Willie is<br>A <sub>2</sub> = "Willie i | s a cat"<br>s a parrot                                                   |

÷

**K** 

Cancel

Apply

No more selections needed in this dialogue.



| Type of animal?        |               |                                                 |                                                         |
|------------------------|---------------|-------------------------------------------------|---------------------------------------------------------|
|                        | ∦<br>≌∎<br>,≜ | Cut<br>Copy<br>Absorb Node                      |                                                         |
|                        |               | Open Tables<br>Copy Table From Node: A          | Select "Open Tables"                                    |
|                        |               | Tools Select All Select Node Group              | •might be followed by                                   |
|                        |               | Snap To Grid Experience/Fading Table Operations | <ul><li>a warning with instructions about how</li></ul> |
|                        |               | Set input/output Set Type Set Node Class        | a node table should be<br>visible                       |
|                        | ş             | Create Temporal Clone<br>Run                    |                                                         |
| igga till anteckningar | ľ             | Network Properties                              |                                                         |

| 😒 Class: unnamed1 📃 🔲 🔤                           |
|---------------------------------------------------|
|                                                   |
| Edit Functions View                               |
| Type of animal?                                   |
| Cat     1       Parrot     1                      |
|                                                   |
| By default, even odds are entered (1 to 1). These |
| can be changed into probabilities summing to 1).  |
|                                                   |
|                                                   |
| Type of animal?                                   |
|                                                   |
|                                                   |
|                                                   |

| 🧟 Class: unna | med 1  |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
|---------------|--------|------------|---|-----|----------|---|---|---|-------|---|---|---|----------|-------------------|----------|
| 80 -          | 2      | <b>₽</b> 0 | 0 | ≰ : | <u>ه</u> | ٢ | 0 |   | label | N | + | - | <b>E</b> | <b>ŧ</b> ≓⊧<br>em | <b>7</b> |
| Edit Function | s Viev | N          |   |     |          |   |   |   |       |   |   |   |          |                   |          |
| Type of anim  | al?    |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
| Cat           | 0.5    |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
| Parrot        | 0.5    |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
|               |        |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
|               |        |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |
|               |        |            |   |     |          | _ | _ | _ |       |   |   |   |          |                   |          |
|               |        |            |   |     |          |   |   |   |       |   |   |   |          |                   |          |

# Add two more chance nodes...







| Type of animal?                   |    |
|-----------------------------------|----|
| Number og legs?                   | C2 |
| Beak?                             | ×] |
| Node States Table Attributes      |    |
| States<br>Beak<br>No beak<br>Down |    |
| Add                               |    |
|                                   |    |
| OK Cancel Apply                   |    |

```
C_1 = "Willie has a beak"
C_2 = "Willie has no beak"
```

| C2                                                       | 100          |                        |  |  |  |  |  |  |  |
|----------------------------------------------------------|--------------|------------------------|--|--|--|--|--|--|--|
| Node                                                     | States Table | Attributes             |  |  |  |  |  |  |  |
| <b></b>                                                  | Name:        | C                      |  |  |  |  |  |  |  |
|                                                          | Label:       | Beak?                  |  |  |  |  |  |  |  |
|                                                          | Type:        | Labelled 🗸             |  |  |  |  |  |  |  |
|                                                          | Group:       | No Group               |  |  |  |  |  |  |  |
|                                                          | Interface:   | Input                  |  |  |  |  |  |  |  |
|                                                          |              | Output                 |  |  |  |  |  |  |  |
|                                                          | Input Panel: | include in panel       |  |  |  |  |  |  |  |
|                                                          | Size:        | Width = 80 Height = 40 |  |  |  |  |  |  |  |
| Node Description                                         |              |                        |  |  |  |  |  |  |  |
| Descriptions are available on SHIFT + Right Mouse Button |              |                        |  |  |  |  |  |  |  |
| OK Cancel Apply                                          |              |                        |  |  |  |  |  |  |  |

# Add links (edges)...



Repeat for link between A and C



Now, activate node B (Number of legs?), right-click and select Open Tables

| ∦<br>⊫∎<br>★ | Cut<br>Copy<br>Absorb Node<br>Open Tables<br>Copy Table From Node: B                                          | ₩ 4 <sup></sup><br>₽ 01                                                                                                                                                                                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Tools                                                                                                         | •                                                                                                                                                                                                                                                                          |
|              | Select All<br>Select Node Group<br>Select Link Group                                                          | b                                                                                                                                                                                                                                                                          |
|              | Snap To Grid                                                                                                  |                                                                                                                                                                                                                                                                            |
|              | Experience/Fading Table Operations<br>Set input/output<br>Set Type<br>Set Node Class<br>Create Temporal Clone | •<br>•<br>•                                                                                                                                                                                                                                                                |
| ¥            | Run                                                                                                           |                                                                                                                                                                                                                                                                            |
| 8            | Node Properties<br>Network Properties                                                                         | 8                                                                                                                                                                                                                                                                          |
|              |                                                                                                               | Image: Select All         Select All         Select All         Select Link Group         Select Link Group         Select Link Group         Set input/output         Set Type         Set Node Class         Create Temporal Clone         Image: Select Note Properties |



| 🧟 Class: unname | ed1             |     |                                |      |              |   |          |                     |          |        | - • • |
|-----------------|-----------------|-----|--------------------------------|------|--------------|---|----------|---------------------|----------|--------|-------|
| 80.             |                 | ⊚⊻♢ | $\diamond \odot \bigcirc \Box$ | abel | N 🕂          | - | <b>.</b> | <del>t≓</del><br>em | <b>₽</b> |        |       |
| Edit Functions  | View            |     |                                |      |              |   |          |                     |          |        | ×     |
| Type of animal? | Number of legs? | ?   |                                |      |              |   |          |                     |          |        |       |
| Type of ani     |                 |     | Cat                            |      |              |   |          |                     |          | Parrot |       |
| Тwo             | 1               |     |                                |      |              |   | 1        |                     |          |        |       |
| Four            | 1               |     |                                |      |              |   | 1        |                     |          |        |       |
|                 |                 |     |                                |      |              |   |          |                     |          |        |       |
|                 |                 |     |                                |      |              |   |          |                     |          |        |       |
|                 |                 |     |                                |      |              |   |          |                     |          |        |       |
|                 |                 |     |                                |      |              |   |          |                     |          |        |       |
|                 |                 |     |                                | Туре | e of animal? |   |          |                     |          |        |       |

The probability table of node B now has probabilities conditional on the state of node A. The are all set to 1 per default, and will each be treated as 0.5.

Are the states sufficiently many?

# Add a state. Double-click on node, select tab States

| Number of legs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enter name of new state here, press Ade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| States<br>Two<br>Four Down Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and a new state is added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other Add          Other       Add         State Description <ul> <li>()</li> <li>()</li></ul> | Number of legs?     Node     States     Image: State in the image: State i |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

The order of the states can be changed by pressing Up and/or Down

## Now, open the table for node C (Beak?) as well.

| 808             | <b>e</b> 🗟 | ⊃⊚⊻         | $\diamond \odot$ | $\bigcirc \square$ | akel | N 4      |    | <b>E</b> | ŧ⇒<br>em     | <b>₽</b> |   |        |   |
|-----------------|------------|-------------|------------------|--------------------|------|----------|----|----------|--------------|----------|---|--------|---|
| Edit Functions  | View       |             |                  |                    |      |          |    |          |              |          |   |        | × |
| Type of animal? | Number of  | legs? Beak? |                  |                    |      |          |    |          |              |          |   |        |   |
| Type of ani     |            |             |                  | Cat                |      |          |    |          |              |          | F | Parrot |   |
| Beak            | 1          |             |                  |                    |      |          |    | 1        |              |          |   |        |   |
| No beak         | 1          |             |                  |                    |      |          |    | 1        |              |          |   |        |   |
|                 |            |             |                  |                    |      |          |    |          |              |          |   |        |   |
|                 |            |             | Number           | of legs?           | Туре | of anima | 12 | Beak?    | $\mathbf{>}$ |          |   |        |   |

We can now enter our probabilities into the tables.

## Node C:

| Edit Functions View |                         |        |  |  |  |  |  |  |  |
|---------------------|-------------------------|--------|--|--|--|--|--|--|--|
| Type of anima       | ? Number of legs? Beak? |        |  |  |  |  |  |  |  |
| Type of ani         | Cat                     | Parrot |  |  |  |  |  |  |  |
| Beak                | 0                       | 1      |  |  |  |  |  |  |  |
| No beak             | 1                       | 0      |  |  |  |  |  |  |  |
|                     |                         |        |  |  |  |  |  |  |  |
| U                   |                         |        |  |  |  |  |  |  |  |

## Reasonable?

## Node B:

| Edit Functions View |                       |        |  |  |  |  |  |  |
|---------------------|-----------------------|--------|--|--|--|--|--|--|
| Type of animal?     | Number of legs? Beak? |        |  |  |  |  |  |  |
| Type of ani         | Cat                   | Parrot |  |  |  |  |  |  |
| Two                 | 0                     | 0.9999 |  |  |  |  |  |  |
| Four                | 0.9999                | 0      |  |  |  |  |  |  |
| Other               | 0.0001                | 0.0001 |  |  |  |  |  |  |
|                     |                       | ·      |  |  |  |  |  |  |

## Reasonable?

#### At this moment (or even earlier) it is wise to save the constructed network.

Open the File menu of the GUI and select Save As...







But it is also possible to use the more general NET format for compatibility with other software (like GeNIe) Now, the designed network should be "run". This means putting the probabilities set into "action"

|                                          | Click on the  |
|------------------------------------------|---------------|
| 🔁 Class: Meeting13_BN                    | flach symbol  |
|                                          | fiasii symbol |
| Edit Functions View                      |               |
| Type of animal? Number of legs? Beak?    |               |
| Type of ani Cat Parrot                   |               |
| Two 0 0.9999                             |               |
| Four 0.9999 0                            |               |
| Other 0.0001 0.0001                      |               |
|                                          |               |
| Type of animal?<br>Number of legs? Beak? |               |
|                                          |               |





Here, we can read of the marginal probabilities (in %) of each state in each node. P(Beak|I), P(No Beak|I); P(Two legs|I), P(Four legs|I), P(Other|I)and (as previously assigned) P(Cat|I) and P(Parrot|I)

# Entering "evidence"

It is now possible to calculate updated (conditional) probabilities given a particular state in one or several of the nodes. This is called " to instantiate" a node to the state of interest and is done in the software by double-clicking on that state.

As an example, suppose that we obtain the information that the animal (Willie) has two legs. Then, we double-click on that state in the list.



The bar colour of this state changes into read and its value to 100 %. The other bars also change values, i.e. the conditional probabilities given Willie has four legs. However, it seems they are either 100.00% or 0.00%. Could that be correct?

The precision used for displaying the numbers can be changed.

From the GUI menu select View, from the list select Belief Precision and in the following list select Percent – Prec: 4. *Other choices can of course also be made*.





Well, we have now the values 100.0000% and 0.0000% respectively. Trying Max Precision would not give more information.

What probabilities are we computing here? Consider for instance the updated probability for  $A_2$ , i.e. "Willie is a parrot".

This probability is

$$P(A_2|B_1) = \frac{P(B_1|A_2) \cdot P(A_2)}{P(B_1|A_1) \cdot P(A_1) + P(B_1|A_2) \cdot P(A_2)} = \frac{0.9999 \cdot 0.5}{0 \cdot 0.5 + 0.9999 \cdot 0.5} = 1$$

Hence, the probability is (maybe not so unexpected) exactly 100%

This can also be seen by setting Belief Precision to Max precision



The absence of displayed decimals indicate that the values displayed are exactly 100 and 0 respectively. If we want to edit the network, e.g. adding nodes and/or changing assigned probabilities, we can return to Edit mode by clicking on the pencil icon.





Now, change the conditional distribution of the number of legs given the type of animal is a cat to 0.0001, 0.9998 and 0.0001 respectively, and run network again.

| Type of animal? | Number of l    | egs? Beak? |
|-----------------|----------------|------------|
| Type of ani     |                | Cat        |
| Two             | <del>0</del> - | 0.0001     |
| Four -          | 0.9999         | 0.9998     |
| Other           | 0.0001         | 0.0001     |



Again, instantiate state "Two" in node Number of legs?



...and we can see that the updated probability for Willie being a parrot is now 0.9999.

Another example Who smashed the window?

A window (pane) was smashed and a person, Mr G is suspected for having done it. On Mr G's pullover 8 glass fragments were recovered, they all matched the (pane of) the smashed window.



Let

*H* be a random variable with states  $H_1$ = "Mr G smashed the window" and  $H_2$ : "Someone (or something) else smashed the window".

*T* be a random variable for which the state is the number of fragments transferred to Mr G's pullover when the window was smashed. Note that if Mr G's pullover was not sufficiently near the window when it was smashed, then T = 0.

*E* be a random variable for which the state is the number of fragments that could be (and were) recovered from Mr G's pullover. Note that *E* is not equal to *T* since (i) it cannot be assumed that all fragments transferred to Mr G's pullover persisted and (ii) were detectable when analysing it.

### Serial connection



 $H_1$ = "Mr G smashed the window"

*H*<sub>2</sub>: "Someone (or something) else smashed the window".

Once the value of T is known the state of H is no longer relevant for the state of E.

# Influence diagrams

Decision-theoretic components can be added to a Bayesian network. The complete network is then related to as a *Bayesian Decision Network* or more common *Influence diagram (ID)* 

Return to the example with banknotes.

Method of detection gives a positive result (detection) in 99 % of the cases when the dye is present, i.e. the proportion of false negatives is 1% and a negative result in 98 % of the cases when the dye is absent, i.e. the proportion of false positives is 2%

The presence of dye is rare: prevalence is about 0.1 %

Let

*H*<sub>0</sub>: Dye is present*H*<sub>1</sub>: Dye is not present

States of the world

and let

 $E_1$ : Method gives positive detection

 $E_2$ : Method gives negative detection

Data



Assume that...

- The banknote is a SEK 100 banknote
- If we deem the banknote to have been contaminated with the dye, we will consider it as useless and it will be destroyed
- If we deem the banknote not to have been contaminated with the dye, we will use it (in the future) for ordinary purchasing
- Upon using the banknote for purchasing, if it is revealed (by other means than our method) that the banknote is contaminated with the dye, there is a fine of SEK 500

| Hence, a payor | f function | for this | problem is |
|----------------|------------|----------|------------|
|----------------|------------|----------|------------|

| Action           | State of the world     |                            |  |  |  |  |  |
|------------------|------------------------|----------------------------|--|--|--|--|--|
|                  | Dye is present $(H_0)$ | Dye is not present $(H_1)$ |  |  |  |  |  |
| Destroy banknote | 0                      | -100                       |  |  |  |  |  |
| Use banknote     | -500                   | 0                          |  |  |  |  |  |

Note that the amounts of money should be entered as negative payoffs. If our utilities are linear in money, this is also our (dis)utility function



We may however consider a loss function to better describe the situation.

Recall: 
$$L(a, \theta) = \max_{a' \in \mathcal{A}} (U(a', \theta)) - U(a, \theta)$$

| Action           | State of the world     |                            |  |  |  |  |  |
|------------------|------------------------|----------------------------|--|--|--|--|--|
|                  | Dye is present $(H_0)$ | Dye is not present $(H_1)$ |  |  |  |  |  |
| Destroy banknote | 0 - 0 = <b>0</b>       | 0 - (-100) = 100           |  |  |  |  |  |
| Use banknote     | 0 - (-500) = 500       | 0 - 0 = <b>0</b>           |  |  |  |  |  |

but is this description so much better than the one with (dis)utilities?



A simple Bayesian network can be constructed for the relevance between the state of the world and data:



| H     | Probabilities |
|-------|---------------|
| $H_0$ | 0.001         |
| $H_1$ | 0.999         |

|   |            | Probabilities |       |  |  |  |  |  |
|---|------------|---------------|-------|--|--|--|--|--|
|   | <i>H</i> : | $H_0$         | $H_1$ |  |  |  |  |  |
| E | $E_1$      | 0.99          | 0.02  |  |  |  |  |  |
|   | $E_2$      | 0.01          | 0.98  |  |  |  |  |  |



Now, we will add two nodes to the network, one for the actions that can be taken and one for the utility function

|                | A                     |       |              |        |                       |
|----------------|-----------------------|-------|--------------|--------|-----------------------|
| $oldsymbol{A}$ | $a_1$                 | Γ     | Destroy      | bankno | te                    |
|                | <i>a</i> <sub>2</sub> |       | Use banknote |        |                       |
|                |                       |       |              |        |                       |
|                |                       |       |              |        |                       |
|                | <i>H</i> :            | ]     | $H_0$        | H      | <i>I</i> <sub>1</sub> |
|                | <i>A</i> :            | $a_1$ | $a_2$        | $a_1$  | $a_2$                 |
| ~              | U                     | 0     | -500         | -100   | 0                     |

 $H_0$ : Dye is present  $H_1$ : Dye is not present

Neither of the nodes are random nodes.

Node U must be a child node with nodes H and A as parents.





With this network, an influence diagram, we would like to be able to propagate data from node E to a choice of decision in node A.

Hence, in node A the posterior expected utility should be calculated, and the utilities should be specified in node L.



# Using Hugin:





**E** 

+ -

н

**⇔=**⇒ em

¥

Η1

Now, nodes for action and utility should be added.

| ١                   |             |           |    |
|---------------------|-------------|-----------|----|
| 2 Class: unnamed1   |             |           |    |
| ☞ℰ┣◯◯✔              | 🏷 💿 🗢 🗖 🗉 🔤 | 🔌 🕇 🗕 🔳 🖬 | ₽  |
| Edit Functions View |             |           | ×  |
| HE                  |             | 11        | T  |
| E1 0.99             | HO          | 0.02      | H1 |
| E2 0.01             |             | 0.98      |    |
|                     |             |           |    |
|                     |             |           |    |
|                     |             | _         |    |
|                     |             |           |    |
|                     |             |           |    |
|                     |             |           |    |
|                     |             | +         |    |
|                     |             |           |    |
|                     |             |           |    |
|                     |             |           |    |





Action nodes by default gets a name with D (for decision) and number. Utility nodes by default gets a name with U and a number.



Add the links (drag from interior of parent node to interior of child node).

| 2 | ) Class: ເ | unnam   | ed1  |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
|---|------------|---------|------|---|---|---|---|--------------|----|---------|---|---|-------|---|-----------------|------|----|---|---|----------|------------------|----------|
|   | 8          |         | 2    | Þ | 0 | ۲ | K | \$           | ٢  | $\circ$ |   | : | label | N | /               | +    | -  |   |   | <b>3</b> | <b>⇔</b> ⇒<br>em | <b>7</b> |
| E | dit Fun    | octions | View | / |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
|   | ΗE         |         |      |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
| ſ | H          | ł       |      |   |   |   |   |              | HO |         |   |   |       |   |                 |      |    |   |   |          |                  | H1       |
| L | E1         |         | 0.99 |   |   |   |   |              |    |         |   |   |       |   |                 | 0.02 | 2  |   |   |          |                  |          |
| L | L2         |         | 0.01 |   |   |   |   |              |    |         |   |   |       |   |                 | 0.90 | ,  |   |   |          |                  |          |
| Ľ |            |         |      |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
| L |            |         |      |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
| L |            |         |      |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
| L |            |         |      |   |   |   |   |              |    |         |   |   |       |   | _               |      |    | ~ |   |          |                  |          |
| L |            |         |      |   |   |   |   | D1           |    |         |   |   |       |   | (               |      | н  |   |   |          |                  |          |
| L |            |         |      |   |   |   |   |              |    |         |   |   |       |   | $\mathbf{x}$    | _    |    | _ |   |          |                  |          |
| L |            |         |      |   |   |   |   | Τ            |    |         |   |   |       | / |                 |      | T  |   |   |          |                  |          |
| L |            |         |      |   |   |   |   | ¥.           |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
| L |            |         |      |   |   |   |   | Ż            |    |         | / |   |       |   |                 |      | *_ | ~ |   |          |                  |          |
| L |            |         |      |   |   | / |   | U1           |    | *       | _ |   |       |   |                 |      | F  |   |   |          |                  |          |
|   |            |         |      |   |   |   |   | 2.           | /  |         |   |   |       |   | $\overline{\ }$ | _    | _  | _ | / |          |                  |          |
|   |            |         |      |   |   |   |   | $\checkmark$ |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |
|   |            |         |      |   |   |   |   |              |    |         |   |   |       |   |                 |      |    |   |   |          |                  |          |

Now, double-click on the action node.



| D1   Node States Table Attributes     Name: D1   Label: | Height = 66                                                                                                                                                                   | Renaming and labelling         |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| OK Cancel                                               | States     Table     Attributes       Name:     A       Label:     A       Type:     Labelled       Group:     No Ga       Interface:     Outp       Input Panel:     include | roup<br>t<br>ut<br>de in panel |

Select tab States.



| A Node States Table Attributes States Action 1 Action 2 Dow | Renaming the states                                      |      |
|-------------------------------------------------------------|----------------------------------------------------------|------|
| Add State Description                                       |                                                          | ×    |
| OK Cancel Apply                                             | States           Destroy banknote           Use banknote | Down |



# Double-clicking the utility node...

|           | Node States Table Attributes                  |        |
|-----------|-----------------------------------------------|--------|
|           | Name: U1                                      |        |
| H0        | Label:                                        |        |
|           | Type: Labelled                                |        |
|           | Group: 🔲 No Group 🚽 📕 Labelling               |        |
|           | Input Laborning                               |        |
|           | Output                                        |        |
|           | Input Panel: include in panel                 |        |
|           | Size: Width = 99 Height = 78                  |        |
| A         | Node Description                              |        |
| - r 👗 r 🖊 | U1                                            | ×      |
| и         | Node States Rable Attributes                  |        |
|           | Descriptions are available on SHIFT + Right I |        |
|           | OK Cancel Label:                              | 0      |
|           | Type: Labelled                                | ~      |
|           | Group: Do Group                               | $\sim$ |
|           |                                               |        |
|           | Interface:                                    |        |
| Se        | elect tab Table.                              | 2      |

| U1              | ×                                              |  |  |  |
|-----------------|------------------------------------------------|--|--|--|
| Node            | States Table Attributes                        |  |  |  |
| 8               | Discrete Parents Up H A Down Add               |  |  |  |
|                 | Specify Table Manually     Specify Expressions |  |  |  |
| f               | Model Nodes Up Down Remove                     |  |  |  |
| OK Cancel Apply |                                                |  |  |  |

Here, we can set the preference order in which the states of *H* and states of *A* should appear in the utility table.

The "ordinary" two-way table...

|       | $H_0$         | $H_{1}$       |
|-------|---------------|---------------|
| $a_1$ | $U(a_1, H_0)$ | $U(a_1, H_1)$ |
| $a_2$ | $U(a_2, H_0)$ | $U(a_2, H_1)$ |

...will in Hugin appear either as... ...or as... ...depending on the order set.

| Н              | H <sub>0</sub> |               | $H_1$         |               |
|----------------|----------------|---------------|---------------|---------------|
| A              | $a_1$          | $a_2$         | $a_1$         | $a_2$         |
| U ( <i>L</i> ) | $U(a_1, H_0)$  | $U(a_2, H_0)$ | $U(a_1, H_1)$ | $U(a_2, H_1)$ |

| A              | <i>a</i> <sub>1</sub> |               | <i>a</i> <sub>2</sub> |               |
|----------------|-----------------------|---------------|-----------------------|---------------|
| H              | $H_0$                 | $H_1$         | $H_0$                 | $H_1$         |
| U ( <i>L</i> ) | $U(a_1, H_0)$         | $U(a_1, H_1)$ | $U(a_2, H_0)$         | $U(a_2, H_1)$ |

Here, we keep the order as given.



Righ-click on the utility node (U) and select Open Tables.







Now, enter manually the (dis)utilities in the table.

| H: | $H_0$ |       | $H_1$ |       |
|----|-------|-------|-------|-------|
| A: | $a_1$ | $a_2$ | $a_1$ | $a_2$ |
| U  | 0     | -500  | -100  | 0     |



| 🛃 Class: Dye_on_b   | oanknotes        |                            |                  | - D 🗙              |  |
|---------------------|------------------|----------------------------|------------------|--------------------|--|
| e 🖉 🗏 🖻             |                  | > //                       | + - 🔳 🛍 👬        | ₩                  |  |
| Edit Functions Vi   | iew              |                            |                  | ×                  |  |
| EHU                 |                  |                            |                  |                    |  |
| H<br>A<br>Utility 0 | Destroy banknote | H0<br>Use banknote<br>-500 | Destroy banknote | H1<br>Use banknote |  |
|                     |                  |                            |                  |                    |  |
|                     |                  |                            |                  |                    |  |
|                     |                  |                            |                  |                    |  |
|                     |                  |                            |                  |                    |  |
|                     | A                | (                          | н                |                    |  |
|                     |                  |                            |                  |                    |  |
|                     | Ţ                |                            | Ţ                |                    |  |
|                     |                  |                            | -                |                    |  |

Run the network by clicking the flash icon.





Marginal probabilities and average utilities are displayed.

Now, enter the evidence = "Method gives positive detection" ( $E_1$ ), by double-clicking on E1.



#### Class: Dye\_on\_banknotes



Here we can read off the calculated expected utilities for each of the two actions. Since the expected (dis)utility of  $a_1$  (Destroy banknote) –95.28 is lower than the expected (dis)utility of  $a_2$  (Use banknote) –23.61, the optimal action is  $a_2$ .

