
Probability patient has disease A,  𝑃 A = 0.3
Probability patient has disease B, 𝑃 B = 0.4

Probability patient has just temporary symptoms, P A ∧ B = 0 ⇒ 𝑃 ¬ A ∨ B = 0.3

With Treat for A: 100 ⋅ 0.3 + 0 ⋅ 0.4 + 0 ⋅ 0.3 = 30
With Treat for B: 10 ⋅ 0.3 + 40 ⋅ 0.4 + 100 ⋅ 0.3 = 49
Wit No treatment: 0 ⋅ 0.3 + 0 ⋅ 0.4 + 100 ⋅ 0.3 = 30

The Bayes’ action is 

therapy treatment for B

“Solution” to Problem 3 from Meeting 6

Express the consequences in terms of percentage of symptom reduction and treat 

them as “gains” (similar to payoff)

Action

Patient’s status

Disease A

prob. 0.3

Disease B

prob. 0.4

Temporary symptoms

prob. 0.3

Treat for A 100% 0 % 0 %

Treat for B 10 % 40 % 100 %

No treatment 0 % 0 % 100 %

 Expected “gains”:



Meeting 7:

Utility



𝑐 = 𝑐 𝑎, 𝜽

Consequences can often be expressed in monetary terms, i.e. using payoff functions 

we may have c(a,  ) = R(a,  ). 

Cash equivalents may be used to transform non-monetary consequences into 

monetary ones.

Utility

What do we mean by utility ?

Utility is naturally coupled with the consequence of a particular action for a certain 

state of the world, i.e. 

But is utility always about the value of money and is there always a numerical 

scale that can be used for representing it?



means that ci is not preferred to cj

𝑐𝑖 ≺ 𝑐𝑗

𝑐𝑖~𝑐𝑗

𝑐𝑖 ≺
~

𝑐𝑗

The following notation is used for comparison of consequences, when the 

consequences are such that it is not possible to use a simple numerical ordering

means that consequence cj is preferred to consequence ci

means that ci and cj are equally preferred

Utility always relates to the relative preferences of consequences with the 

decision maker.

The Bayes action (maximising the expected payoff) is not always the obvious 

probabilistic criterion.

A consequence of an action can be preferred to another consequence by one 

decision-maker, while the opposite can hold for another decision-maker.



Moreover, assume that when the temperature is below 15 C and you have decided 

to wear shorts  and a t-shirt you will as a consequence feel unusually cold

c2 = c (a =“shorts”,  < 15 C )

Example

Your preference order would be one of                 ,               and𝑐1 ≺ 𝑐2 𝑐2 ≺ 𝑐1 𝑐1~𝑐2

Assume that when the temperature is above 25 C and you have decided to wear 

long trousers and a long sleeves shirt,  you will as a consequence feel unusually hot 

c1 = c (a =“longs”,  > 25 C )



If you think it is always better to feel warm than cold your preference order will be 

𝑐2 ≺ 𝑐1

c1 = c (a =“longs”,  > 25 C )

c2 = c (a =“shorts”,  < 15 C )

Another person feeling the same as you may really dislike feeling too warm and 

hence has the preference order

𝑐1 ≺ 𝑐2

A third person also feeling the same as you may be someone who would always 

complain as soon as weather condition and choice of garments do not “fit” well 

probably has the preference order

𝑐1~𝑐2



To be able to allow for a relative desirability that deviates from the linear 

comparability of monetary consequences we introduce a so-called utility function:

𝑈 𝑐 = 𝑈 𝑐 𝑎, 𝜽 = 𝑈 𝑎, 𝜽

If the difference in payoff between two pairs of action and state of world is dR, i.e.

𝑑𝑅 = 𝑅 𝑎1, 𝜽1 − 𝑅 𝑎2, 𝜽2

the following three differences in utility may hold

𝑈 𝑎1, 𝜽1 − 𝑈 𝑎2, 𝜽2 < 𝑘 ⋅ 𝑑𝑅

𝑈 𝑎1, 𝜽1 − 𝑈 𝑎2, 𝜽2 = 𝑘 ⋅ 𝑑𝑅

𝑈 𝑎1, 𝜽1 − 𝑈 𝑎2, 𝜽2 > 𝑘 ⋅ 𝑑𝑅

where k is any constant > 0 that can take care of that utility and payoff may be 

given on different scales.



Two axioms of utility:

1. If                 then U(c1) < U(c2) and if                then U(c1) = U(c2)

2. If 

• O1 = Obtaining consequence c1 for certain

• O2 = Obtaining consequence c2 with probability p and obtaining 

consequence c3 with probability 1–p 

• O1 ~ O2

then U(c1) = pU(c2) + (1–p) U(c3) 

𝑐1 ≺ 𝑐2 𝑐1~𝑐2

Hence, it is not necessary to work with preferences and their notations (     , ~ ,      ).≺ ≺
~

All preferences can be expressed in terms of the utility function:

𝑐1 ≺ 𝑐2 ⇔ 𝑈 𝑐1 < 𝑈 𝑐2

𝑐1 ~ 𝑐2 ⇔ 𝑈 𝑐1 = 𝑈 𝑐2

𝑐1 ≺
~

𝑐2 ⇔ 𝑈 𝑐1 ≤ 𝑈 𝑐2

“p-mixture”



Now, assume U(a, ) is a utility function and let W (a, ) = b + d U(a, ) where b

and d are constants with d > 0. 

If 𝑈 𝑎𝑖 , 𝜽𝑘 < 𝑈 𝑎𝑗 , 𝜽𝑙 [where 𝑖 ≠ 𝑗 or 𝑘 ≠ 𝑙 or both ; 𝑐 𝑎𝑖 , 𝜽𝑘 ≺ 𝑐 𝑎𝑗 , 𝜽𝑙 ]

⇒
𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘

𝑊 𝑎𝑗 , 𝜽𝑙 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗 , 𝜽𝑙

⇒ 𝑊 𝑎𝑗 , 𝜽𝑙 − 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘

= ณ𝑑
>0

⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑈 𝑎𝑖 , 𝜽𝑘

>0

> 0

If 𝑈 𝑎𝑖 , 𝜽𝑘 = 𝑈 𝑎𝑗 , 𝜽𝑙 [where 𝑖 ≠ 𝑗 or 𝑘 ≠ 𝑙 or both]

⇒ 𝑊 𝑎𝑗 , 𝜽𝑙 − 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘

= ณ𝑑
>0

⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑈 𝑎𝑖 , 𝜽𝑘

=0

= 0

If 𝑈 𝑎𝑖 , 𝜽𝑘

= 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

[utilities for 3 different consequences]

⇒ 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

= 𝑏 ⋅ 𝑝 + 𝑏 ⋅ 1 − 𝑝 + 𝑑 ⋅ 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 𝑑 ⋅ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

= 𝑝 ⋅ 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

=𝑝 ⋅ 𝑊 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑊 𝑎𝑗2
, 𝜽𝑙21



Now, assume U(a, ) is a utility function and let W (a, ) = b + d U(a, ) where b

and d are constants with d > 0. 

If 𝑈 𝑎𝑖 , θ𝑘 < 𝑈 𝑎𝑗 , θ𝑙 [where 𝑖 ≠ 𝑗 or 𝑘 ≠ 𝑙 or both ; 𝑐 𝑎𝑖 , θ𝑘 ≺ 𝑐 𝑎𝑗 , θ𝑙 ]

⇒
𝑊 𝑎𝑖 , θ𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , θ𝑘

𝑊 𝑎𝑗 , θ𝑙 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗 , θ𝑙

⇒ 𝑊 𝑎𝑗 , θ𝑙 − 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘

= ณ𝑑
>0

⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑈 𝑎𝑖 , 𝜽𝑘

>0

> 0

If 𝑈 𝑎𝑖 , 𝜽𝑘 = 𝑈 𝑎𝑗 , 𝜽𝑙 where 𝑖 ≠ 𝑗 or 𝑘 ≠ 𝑙 or both ⇒ 

𝑊 𝑎𝑗 , 𝜽𝑙 − 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗, 𝜽𝑙 − 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘

= ณ𝑑
>0

⋅ 𝑈 𝑎𝑗 , 𝜽𝑙 − 𝑈 𝑎𝑖 , 𝜽𝑘

=0

= 0

If 𝑈 𝑎𝑖 , 𝜽𝑘

= 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

[utilities for 3 different consequences]

⇒ 𝑊 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑖 , 𝜽𝑘 = 𝑏 + 𝑑 ⋅ 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

= 𝑏 ⋅ 𝑝 + 𝑏 ⋅ 1 − 𝑝 + 𝑑 ⋅ 𝑝 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 𝑑 ⋅ 1 − 𝑝 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

= 𝑝 ⋅ 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑏 + 𝑑 ⋅ 𝑈 𝑎𝑗2
, 𝜽𝑙2

=

=𝑝 ⋅ 𝑊 𝑎𝑗1
, 𝜽𝑙1

+ 1 − 𝑝 ⋅ 𝑊 𝑎𝑗2
, 𝜽𝑙21

A utility function is only unique up to a 

linear transformation



The expected utility of an action  a with respect to a probability distribution of the 

states of the world is obtained – analogously to how expected payoff and expected 

loss are obtained – by integrating the utility function with the probability distribution 

of  using its probability density (or mass) function g( ) :

When data (x) is taken into account, g( ) is the posterior  pdf/pmf f’’( | x ) =

q ( | x ) :

When data is not taken into account g( ) is the prior pdf/pmf f’( ) = p( ) :

𝐸𝑈 = 𝐸𝑔 𝑈 𝑎, ෩𝜽 = න
𝜽

𝑈 𝑎, 𝜽 ⋅ 𝑔 𝜽 𝑑𝜽

𝐸𝑈 = න
𝜽

𝑈 𝑎, 𝜽 ⋅ 𝑓′′ 𝜽ȁ𝒙 𝑑𝜽 = න
𝜽

𝑈 𝑎, 𝜽 ⋅ 𝑞 𝜽ȁ𝒙 𝑑𝜽

𝐸𝑈 = න
𝜽

𝑈 𝑎, 𝜽 ⋅ 𝑓′ 𝜽 𝑑𝜽 = න
𝜽

𝑈 𝑎, 𝜽 ⋅ 𝑝 𝜽 𝑑𝜽



Let

c1 be the worst consequence and c2 be the best consequence

For a particular action with consequence c it must always hold that

0  U(c)  1

Normalise – without loss of generality – the utility function U(c) such that

U(c1) = 0 and U(c2) = 1

Assessing/finding a utility function

Now, assume a gamble in which you should choose between

1. Obtaining consequence c for certain

2. Obtain consequence c1 with probability 1–p and consequence c2 with 

probability p

With the first choice the expected utility is U(c).

With the second choice the expected utility is 

𝑈 𝑐1 ⋅ 1 − 𝑝 + 𝑈 𝑐2 ⋅ 𝑝 = 0 ⋅ 1 − 𝑝 + 1 ⋅ 𝑝 = 𝑝



Hence 𝑈 𝑐 = 1 − 𝑝0 ⋅ 𝑈 𝑐1

=0

+ 𝑝0 ⋅ 𝑈 𝑐2

=1

= 𝑝0

This means that U(c) can be seen as proportional to the probability of obtaining the 

best consequence and vice versa. 

For a certain value of p, p0 say, you will be indifferent between 1 and 2 

1. Obtaining consequence c for certain

2. Obtain consequence c1 with probability 1–p and 

consequence c2 with probability p

𝑈 𝑐 ∝ 𝑝0 𝑝0 ∝ 𝑈 𝑐



 The Bayes action (decision) is 

Pr Best consequenceȁ𝑎, 𝜽 ∝ 𝑈 𝑎, 𝜽

⇒

Pr Best consequenceȁ𝑎 ∝ න
𝜃

𝑈 𝑎, 𝜽 ⋅ 𝑔 𝜽 𝑑𝜽 = 𝑈 𝑎, 𝑔  (= 𝐸𝑔 𝜽 𝑈 𝑎, 𝜽  )

𝑎 𝐵 = ൞
arg max

𝑎∈𝒜
𝑈 𝑎, 𝑝  when no data are used

arg max
𝑎∈𝒜

𝑈 𝑎, 𝑞, 𝒙 when data, 𝒙, is used

Hence, the optimal action is the action that maximises the expected utility under 

the probability distribution that rules the state of nature

𝒜 is the set of possible 

actions
𝑎𝑔

optimal
= arg max

𝑎∈𝒜
𝑈 𝑎, 𝑔



Loss function

Then, the Bayes action with the use of data can be written

i.e. the action that minimises the expected posterior loss.

𝐿 𝑎, 𝜽 = max
𝑎′∈𝒜

𝑈 𝑎′, 𝜽 − 𝑈 𝑎, 𝜽

𝑎 𝐵 = arg max
𝑎∈𝒜

න
𝜽

𝑈 𝑎, 𝜽 𝑞 𝜽ȁx 𝑑𝜽 =

= arg max
𝑎∈𝒜

න
𝜽

max
𝑎′∈𝒜

𝑈 𝑎′, 𝜽 − 𝐿 𝑎, 𝜽 𝑞 𝜽ȁx 𝑑𝜽 =

= arg min
𝑎∈𝒜

න
𝜽

𝐿 𝑎, 𝜽 𝑞 𝜽ȁx 𝑑𝜽 = arg min
𝑎∈𝒜

𝐿 𝑎, 𝑞, x

Utilities can – like payoffs – be both positive and negative. A negative utility – which 

may be called disutility – comes with a non-desirable consequence.

Note the analogy with the relation 

between loss and payoff function. 

When all consequences are non-desirable it is common to describe the decision 

problem in terms of losses instead of  utilities. The loss function in Bayesian decision 

theory is defined as



Example

Assume you are choosing between fixing the interest rate of your mortgage loan for 

one year or keeping the floating interest rate for this period.

Let us say that the floating rate for the moment is 4 % and the fixed rate is 5 %. 

The floating rate may however increase during the period, and we may 

approximately assume that with probability g1 = 0.10 the average floating rate will be 

7 %, with probability g2 = 0.20 the average floating rate will be 6 % and with 

probability g3 = 0.70 the floating rate will stay at 4 %.

Let a1 = Fix the interest rate and a2 = Keep the floating interest rate

Let  = average floating rate for the coming period



𝑈 𝑎1, 𝜃 = ቐ
4 − 5 = −1 𝜃 = 4
4 − 5 = −1 𝜃 = 6
4 − 5 = −1 𝜃 = 7

𝑈 𝑎2, 𝜃 = ቐ
4 − 4 =  0 𝜃 = 4
4 − 6 = −2 𝜃 = 6
4 − 7 = −3 𝜃 = 7

⇒

𝑈 𝑎1, 𝑔 = −1 ⋅ 0.7 + −1 ⋅ 0.2 + −1 ⋅ 0.1 = −1

𝑈 𝑎2, 𝑔 = 0 ⋅ 0.7 + −2 ⋅ 0.2 + −3 ⋅ 0.1 = −0.7

a1 = Fix the interest rate

a2 = Keep the floating interest rate

 = average floating rate (in %) for the 

coming period

Pg( = 4) =0.7; Pg( = 6) =0.2; Pg( = 7) =0.1

Note that since a utility function is unique up to a linear transformation, we do not need to 

include the mortgage loan amount into this function.

A utility function can be defined from the potential changes in average floating rate: 

⇒ 𝑎 𝐵 = 𝑎2



𝑈 𝑎1, 𝜃 = ቐ
−1 𝜃 = 4
−1 𝜃 = 6
−1 𝜃 = 7

 𝑈 𝑎2, 𝜃 = ቐ
0 𝜃 = 4

−2 𝜃 = 6
−3 𝜃 = 7

a1 = Fix the interest rate

a2 = Keep the floating interest rate

 = average floating rate (in %) for the 

coming period

Pg( = 4) =0.7; Pg( = 6) =0.2; Pg( = 7) =0.1

The loss function can be calculated as

𝐿 𝑎1, 𝜃 = ቐ
 0 − −1 = 1 𝜃 = 4
−1 − −1 = 0 𝜃 = 6
−1 − −1 = 0 𝜃 = 7

𝑈 𝑎2, 𝜃 = ቐ

 0 −  0 = 0 𝜃 = 4
−1 − (−2) = 1 𝜃 = 6
−1 − (−3) = 2 𝜃 = 7

𝐿 𝑎, 𝜽 = max
𝑎′∈𝒜

𝑈 𝑎′, 𝜽 − 𝑈 𝑎, 𝜽

⇒

𝐿 𝑎1, 𝑔 = 1 ⋅ 0.7 + 0 ⋅ 0.2 + 0 ⋅ 0.1 = 0.7

𝐿 𝑎2, 𝑔 = 0 ⋅ 0.7 + 1 ⋅ 0.2 + 2 ⋅ 0.1 = 0.4
⇒ 𝑎 𝐵 = 𝑎2



a1 = Fix the interest rate

a2 = Keep the floating interest rate

 = average floating rate (in %) for the 

coming period

Pg( = 4) =0.7; Pg( = 6) =0.2; Pg( = 7) =0.1

Another utility function may be obtained by considering the mortgage loan amount 

and also include inconveniences that may appear in the process of changing the type 

of rate.

Least preferable payoff is –3% (occurs when keeping the floating rate and its 

average becomes 7%)

Most preferable payoff is 0% (occurs when keeping the floating interest rate and its 

average stays  at 4%,)

Hence, let U(a2,  = 7) = 0 and U(a2,  = 4) = 1.

For any other consequence (payoff), c, the utility with be equal to the probability p0

with which you are indifferent between c and 0(1 – p0) + 1 p0 = p0

The utility function used so far is linear in 

payoff.



a1 = Fix the interest rate

a2 = Keep the floating interest rate

 = average floating rate (in %) for the 

coming period

Pg( = 4) =0.7; Pg( = 6) =0.2; Pg( = 7) =0.1

U(a2,  = 7) = 0  ;U(a2,  = 4) = 1

With the utility function used before

𝑈 𝑎1, 𝜃 = ቐ
−1 𝜃 = 4
−1 𝜃 = 6
−1 𝜃 = 7

 𝑈 𝑎2, 𝜃 = ቐ
0 𝜃 = 4

−2 𝜃 = 6
−3 𝜃 = 7

…we note that 𝑈 𝑎2, 6 = −2 = −3 ∙
−2

−3
= −3 ∙ 1 −

1

3

Hence using the (0,1)-scale this utility is equal to 1/3. Correspondingly, the utilities 

𝑈 𝑎1, 4 , 𝑈 𝑎1, 6 , and 𝑈 𝑎1, 7 are all equal to 2/3 on this scale (because of the 

utility function being linear in payoff).

…but this also means that you would be indifferent between a certain increase 

by 1 %-unit of the rate on one hand and an increase by 3 %-units with 

probability 1/3 and no increase with probability 2/3 on the other. 



𝑈 𝑎1, 𝑔 = Τ4 5 ⋅ 0.7 + Τ4 5 ⋅ 0.2 + Τ4 5 ⋅ 0.1 = 0.8

𝑈 𝑎2, 𝑔 = 1 ⋅ 0.7 + Τ1 3 ⋅ 0.2 + 0 ⋅ 0.1 ≈ 0.77

a1 = Fix the interest rate

a2 = Keep the floating interest rate

 = average floating rate (in %) for the 

coming period

Pg( = 4) =0.7; Pg( = 6) =0.2; Pg( = 7) =0.1

U(a2,  = 7) = 0  ;U(a2,  = 4) = 1

However, would you instead be indifferent between 

• an increase in interest rate by 1 %-unit on one hand and

• an increase by 3 %-units with probability 1/5 and no increase with probability 4/5 

on the other

– reflecting potential inconveniences with changing interest rate –

your utilities 𝑈 𝑎1, 4 , 𝑈 𝑎1, 6 , and 𝑈 𝑎1, 7 would all be equal to 4/5.

With this utility function your expected utilities for the two actions are

It might still be the case that your utility 𝑈 𝑎2, 6 is 1/3.

⇒ 𝑎 𝐵 = 𝑎1



Example – medical treatment from a GP:s perspective

A general practitioner (GP) is supposed to state the diagnosis of a patient, who has 

declared some symptoms.

The GP sees three possibilities for the symptoms declared:

1. The patient has disease D1

2. The patient has disease D2

3. The patient has no disease

These are the three possible states of nature and can be denoted 1, 2 and 3

respectively.

Now, the GP can choose to either…

…treat the patient for disease D1 (action a1 ) …or…

…treat the patient for disease D2 (action a2 ) …or…

…give no treatment (action a3 ) 

Note! This description of the decision problem is not realistic, but just to illustrate. A GP 

would do more than just select a treatment directly from the declared symptoms if there is 

more than one explanation to them.



Naturally, different combinations of action and state of the nature would lead to less 

or more preferable consequences.

Assume that 

• the least preferable (worst) consequence is obtained when the patient has disease 

D2 and no treatment is given

• the most (and equally) preferable consequences are obtained when the patient 

has disease D1 and is treated for D1, and when the patient has disease D2 and is 

treated for D2 respectively.

We could also obtain this most preferable consequence when the patient has no 

disease and is not treated.

Hence,
a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

U(a3 , 2 ) = 0

U(a1 ,  1 ) = U(a2 ,  2 ) =1



Now, to find the utilities for all other combinations 

of action and state of the nature (treatment and 

presence/absence of disease) the GP should do the 

following:

Find U(ai,  j ) such that he is indifferent between

I. Obtaining for certain the consequence of taking action ai when the state of 

nature is  j , i.e. c(ai,  j)

II. Obtain consequence c(a3,  2) with probability 1–U(ai,  j ) and 

consequence c(a1,  1) (= c(a2,  2) ) with probability U(ai,  j ) 

A possible table of utilities may then be

 1  2  3

a1 1 0.3 0.6

a2 0.4 1 0.6

a3 0.1 0 0.9

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”



 1  2  3

a1 1 0.2 0.6

a2 0.4 1 0.6

a3 0.3 0 0.9

Some rational explanations for the numbers in the table may be:

a) Treating when no disease is present may lead to inconveniences for the patient 

(undertaking some time-consuming activities and/or suffering from side-effects of 

prescribed drugs).

b) Treating for one disease while the other is present would have similar consequences like 

in a) with the addition that the other disease would possibly not be cured

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”



• the incidence rate of disease D1 is 5 in 100 

persons per week

• the incidence rate of disease D2 is 1 in 100 

persons per week. 

Calculating conditional incidence rates may then have given the following 

conditional prior probabilities (assuming a proportion of people with no disease 

among those visiting the GP): 

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

𝑃 ෨𝜃 = 𝜃1 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.20, 𝑃 ෨𝜃 = 𝜃2 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.01,

𝑃 ෨𝜃 = 𝜃3 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.79

Both these incidence rates are per week at the time of the year (think flus). 

Now, the GP must assign probabilities to the three 

states of nature. 

From epidemiological studies it might be known that 

To assign prior probabilities from these epidemiological statistics we must assume 

that the GP is confident with restricting the set of possible states of nature to the 

three used here. 

The much higher probability of 𝜃1 can be due to experience that people with disease 

D1 tend to visit the GP much more often than people with disease D2. 



 1  2  3

a1 1 0.2 0.6

a2 0.4 1 0.6

a3 0.3 0 0.9

Hence, the expected utilities of each action become

…and the optimal action using the EU-criterion is a3, i.e. “Do not treat”

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

𝑃 ෨𝜃 = 𝜃1 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.20, 𝑃 ෨𝜃 = 𝜃2 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.01,

𝑃 ෨𝜃 = 𝜃3 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.79

𝐸 𝑈 𝑎1, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈1 = 1 ∙ 0.20 + 0.2 ∙ 0.01 + 0.6 ∙ 0.79 ≈ 0.68

𝐸 𝑈 𝑎2, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈2 = 0.4 ∙ 0.20 + 1 ∙ 0.01 + 0.6 ∙ 0.79 ≈ 0.56

𝐸 𝑈 𝑎3, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈3 = 0.3 ∙ 0.20 + 0 ∙ 0.01 + 0.9 ∙ 0.79 ≈ 0.77
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