
Meeting 7:

Utility, part 2…



Example – medical treatment from a GP:s perspective

A general practitioner (GP) is supposed to state the diagnosis of a patient, who has 

declared some symptoms.

The GP sees three possibilities for the symptoms declared:

1. The patient has disease D1

2. The patient has disease D2

3. The patient has no disease

These are the three possible states of nature and can be denoted 1, 2 and 3

respectively.

Now, the GP can choose to either…

…treat the patient for disease D1 (action a1 ) …or…

…treat the patient for disease D2 (action a2 ) …or…

…give no treatment (action a3 ) 

Note! This description of the decision problem is not realistic, but just to illustrate. A GP 

would do more than just select a treatment directly from the declared symptoms if there is 

more than one explanation to them.



Naturally, different combinations of action and state of the nature would lead to less 

or more preferable consequences.

Assume that 

• the least preferable (worst) consequence is obtained when the patient has disease 

D2 and no treatment is given

• the most (and equally) preferable consequences are obtained when the patient 

has disease D1 and is treated for D1, and when the patient has disease D2 and is 

treated for D2 respectively.

We could also obtain this most preferable consequence when the patient has no 

disease and is not treated.

Hence,
a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

U(a3 , 2 ) = 0

U(a1 ,  1 ) = U(a2 ,  2 ) =1



Now, to find the utilities for all other combinations 

of action and state of the nature (treatment and 

presence/absence of disease) the GP should do the 

following:

Find U(ai,  j ) such that he is indifferent between

I. Obtaining for certain the consequence of taking action ai when the state of 

nature is  j , i.e. c(ai,  j)

II. Obtain consequence c(a3,  2) with probability 1–U(ai,  j ) and 

consequence c(a1,  1) (= c(a2,  2) ) with probability U(ai,  j ) 

A possible table of utilities may then be

 1  2  3

a1 1 0.3 0.6

a2 0.4 1 0.6

a3 0.1 0 0.9

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”



 1  2  3

a1 1 0.2 0.6

a2 0.4 1 0.6

a3 0.3 0 0.9

Some rational explanations for the numbers in the table may be:

a) Treating when no disease is present may lead to inconveniences for the patient 

(undertaking some time-consuming activities and/or suffering from side-effects of 

prescribed drugs).

b) Treating for one disease while the other is present would have similar consequences like 

in a) with the addition that the other disease would possibly not be cured

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”



• the incidence rate of disease D1 is 5 in 100 

persons per week

• the incidence rate of disease D2 is 1 in 100 

persons per week. 

Calculating conditional incidence rates may then have given the following 

conditional prior probabilities (assuming a proportion of people with no disease 

among those visiting the GP): 

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

𝑃 ෨𝜃 = 𝜃1 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.20, 𝑃 ෨𝜃 = 𝜃2 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.01,

𝑃 ෨𝜃 = 𝜃3 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.79

Both these incidence rates are per week at the time of the year (think flus). 

Now, the GP must assign probabilities to the three 

states of nature. 

From epidemiological studies it might be known that 

To assign prior probabilities from these epidemiological statistics we must assume 

that the GP is confident with restricting the set of possible states of nature to the 

three used here. 

The much higher probability of 𝜃1 can be due to experience that people with disease 

D1 tend to visit the GP much more often than people with disease D2. 



 1  2  3

a1 1 0.2 0.6

a2 0.4 1 0.6

a3 0.3 0 0.9

Hence, the expected utilities of each action become

…and the optimal action using the EU-criterion is a3, i.e. “Do not treat”

a1 = “Treat for disease D1”

a2 = “Treat for disease D2”

a3 = “Do not treat”

 1 = “The patient has disease D1”

 2 = “The patient has disease D2”

 3 =“The patient has no disease”

𝑃 ෨𝜃 = 𝜃1 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.20, 𝑃 ෨𝜃 = 𝜃2 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.01,

𝑃 ෨𝜃 = 𝜃3 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 ≈ 0.79

𝐸 𝑈 𝑎1, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈1 = 1 ∙ 0.20 + 0.2 ∙ 0.01 + 0.6 ∙ 0.79 ≈ 0.68

𝐸 𝑈 𝑎2, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈2 = 0.4 ∙ 0.20 + 1 ∙ 0.01 + 0.6 ∙ 0.79 ≈ 0.56

𝐸 𝑈 𝑎3, ෨𝜃 ቚ ෨𝜃 = 𝜃1, 𝜃2 or 𝜃3 = 𝐸𝑈3 = 0.3 ∙ 0.20 + 0 ∙ 0.01 + 0.9 ∙ 0.79 ≈ 0.77



Utility as a function of payoff

In some accounts for decision theory the utility function is assumed to be linear of 

payoff, i.e.

with d > 0.

Then, maximising the expected utility is equivalent to maximising the expected 

payoff.

With such an assumption it is not possible to explain decisional behaviour among 

several individuals if they do not all adhere to the criterion of maximising the 

expected payoff. 

Therefore, it is more general to assume that utility can be written as a function of 

payoff, but the function needs not to be linear:

U(a, ) = c + d  R(a, )

U(a, ) = h (R(a, ))



Besides the possibility that U(a,  ) can be linear in R(a,  ) the most common 

types of functions are

• U(a,  ) is a concave function of R(a,  ) 

• U(a,  ) is a convex function of R(a,  ) 



Concave utility functions

This functional form of the utility 

function characterizes a 

risk avoider.

Why is it so?



Consider the following bet:

Win SEK 500 with probability 0.7 and lose SEK 700 with probability 0.3 

There are two actions: a1 = “take the bet” and a2 = “do not bet” 

Focus on the range of money defined by the bet:



Now, the expected payoff of the bet is

Since any convex combination of two points v1 and v2, i.e. any v = p  v1 + (1–p)  v2

where  0 < p < 1, lies on the segment joining v1 and v2 (in one dimension this means  

v1 < v < v2 ) we can represent the expected payoff as a point on a straight line 

joining the points ( –700, U(–700)) and (500, U(500)):

which is a convex combination of 500 and –700.   

To clarify: the “two points” in this sense 

are points on the curve defining the 

utility function.

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

ER = 500  0.7 – 700  0.3 = 140

The straight line corresponds with a 

utility function that is linear in payoff 

 values along the line can be 

interpreted as payoff expressed in the 

same unit (scale) as U(R).

Hence, v1 and v2 both need to be on the 

curve, which then automatically defines 

the coordinates of the points.



Now, it also holds that the expected utility (for money) of taking the bet is

This is also a convex combination, but here of two utilities. This must be represented 

by the same point as was the corresponding convex combination of payoffs, but now 

we should view it from the “utility” perspective

Using the mathematical function that was used to produce the curve we can calculate 

EU  0.802

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

EU(bet) = U(500)  0.7 + U(– 700)  0.3



Plotting R as a function of U(R) we can 

see which cash equivalent (expressed 

on the same scale as U(R) ) corresponds 

with which utility.

In particular, the value of EU is equal to the utility of a cash equivalent satisfying

Here, again using the mathematical function “behind” the curve, we can calculate 

R(EU )  –167.

Here we can see that the cash equivalents 

for the utility of taking this bet are all 

lower than or equal to the payoff of 

taking the bet.

where U -1 is the inverse function of U(R) restricted to R  (-700, 500)

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

R(EU ) = U –1(EU )



Hence, the decision maker appreciates the 

expected utility of taking the bet to be 

equivalent to a payoff of  SEK –167 …

… while the expected payoff of taking the 

bet is SEK 140.

Now, the expected payoff of not taking the bet is (always) SEK 0.

The expected utility of not taking the bet must be equal to the utility when R = 0, 

i.e. U(0).

This can again be calculated using the mathematical function behind  U(0)  0.87

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 



R(EU) is called the certainty equivalent of the decision-maker. This is the lowest 

value of  a certain payment that the decision-maker would prefer versus taking the 

bet. Apparently this value can be negative which would render a cost and not a 

return for the decision-maker. 

Alternatively expressed, the decision-maker is in this case indifferent between

1. Obtaining SEK –167 for certain     and

2. Obtain SEK 500 with probability 0.7 and losing SEK 700 with probability 0.3  

Now, the very decision problem is about taking the 

bet or not. The expected utility of taking the bet is 

0.802 and the expected utility of not taking the bet 

is the utility corresponding with a payoff of SEK 0, 

which is 0.87.

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

Thus the optimal decision with the EU-criterion is 

to not take the bet.



Risk premium

When a risk avoider is exposed to a “bet”, he or 

she will always have an expected utility of 

taking the bet that is lower than (or at highest 

equal to)  the expected utility that is linear in 

payoff.

The payoff equivalent to the expected utility of

this risk avoider is their certainty equivalent,

CE, and the difference between the expected

payoff, ER, and the certainty equivalent is called

their risk premium, RP.

In the above example the risk premium of the decision-maker is then approximately 

SEK 140 – (–167) = 307 

Notice (again) that all functions and specific quantities are personal to the decision-maker!

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

RP = ER – CE 



What is then the difference between the certainty 

equivalent and the risk premium?

In the example above, the expected payoff was positive (ER = 140) while the 

certainty equivalent was negative (CE = –167). 

The certainty equivalent is what the decision maker considers to be the expected 

utility in monetary terms of taking the bet. Hence they will never consider taking a 

bet with a negative certainty equivalent, but it would not generally suffice with a 

positive certain equivalent either.

The risk premium tells how much 

money must at least be additionally

paid to the decision maker for 

making them take the bet. In the 

example above that amount was 

SEK 307.  

RP

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 



Hence, the higher the certainty equivalent the lower the risk premium.

If the expected payoff of a bet is 0, the bet is said to be a fair bet. In that case the risk 

premium will be equal to the certainty equivalent in absolute sense since 

RP = 0 – CE.

RP

It is the shape of the utility function that 

implies that the decision-maker does not 

become indifferent between

1. Obtaining SEK x for certain     and

2. Obtain SEK 500 with probability 0.7 

and losing SEK 700 with probability 

0.3  

until x = RP.

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 



Now, if the decision-maker is risk neutral the expected utility for money of a bet 

coincides with the expected payoff (the utility is linear in payoff). This means that 

the certainty equivalent is always equal to ER and the risk premium is zero.



For a risk taker the situation is the opposite as for the risk avoider. The utility 

function of a risk avoider is convex, e.g.



This function is here made such as the utilities for R = –700 and R = 500 

are the same as with the previous utility function of a risk avoider. 

Win SEK 500 with probability 0.7 and lose SEK 700 with probability 0.3 

Hence with the same bet as before, i.e. 

we can graphically illustrate this as 



If we – as previously – plot R against U(R) we obtain:

The value of EU for taking the bet is the same here as before, i.e. 0.802 

…and the certainty equivalent here 

becomes CE = R(EU)  372

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 



The expected utility of not  taking the bet is 

calculated as U(0)  0.51

Thus the optimal decision with the 

EU-criterion is to take the bet, since 

U(0) < EU.

The risk premium with this utility function becomes

…hence negative!

Win SEK 500 with probability 0.7 and 

lose SEK 700 with probability 0.3 

RP = ER – CE  140 – 372 = – 232 (SEK) 



For a risk taker the certainty equivalent is always higher than (or at least equal to) 

the expected payoff.

Hence, the risk premium for taking a bet is always negative for a risk taker.

This means that a risk taker is willing to pay a certain amount for taking the bet.


