
Meeting 3:

Exponential class of distributions, 

Interpretation of priors



The exponential class of distributions

A (family) of probability distribution(s) belong(s) to the k-parameter exponential 

class of distributions if the probability density (or mass) function can be written:

𝑓 𝒙ȁ𝜽 = 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙 +𝐶 𝒙 +𝐷 𝜽

where

•  = (1 , … , k )

• A1( ), …, Ak( ) and D( ) are functions of the parameter  only (and not of x )

• B1(x), … , Bk(x) and C(x) are functions of x only (and not of  )



Examples

Two parameter Gamma distribution (univariate), shape and rate 

parameterization:

𝑓 𝑥ȁθ = 𝑓 𝑥ȁ𝛼, 𝛽 =
𝛽𝛼

Γ 𝛼
𝑥𝛼−1𝑒−𝛽𝑥 ; 𝑥 ≥ 0

= 𝑒 𝛼−1 ln 𝑥 −𝛽𝑥+𝛼 ln 𝛽−ln Γ 𝛼 = 𝑒𝛼 ln 𝑥−𝛽𝑥−ln 𝑥+𝛼 ln 𝛽−ln Γ 𝛼

Parametric form 1: 𝑒 𝛼−1 ln 𝑥 −𝛽𝑥+𝛼 ln 𝛽−ln Γ 𝛼 𝐴1 𝜽 = 𝐴1 𝛼, 𝛽 = 𝛼 − 1
𝐴2 𝜽 = 𝐴2 𝛼, 𝛽 = 𝛽
𝐵1 𝒙 = ln 𝑥
𝐵2 𝒙 = −𝑥
𝐶 𝒙 = 0
𝐷 𝜽 = 𝐷 𝛼, 𝛽
= 𝛼 ln𝛽 − ln Γ 𝛼



Parametric form 2: 𝐴1 𝜽 = 𝐴1 𝛼, 𝛽 = 𝛼
𝐴2 𝜽 = 𝐴2 𝛼, 𝛽 = 𝛽
𝐵1 𝒙 = ln 𝑥
𝐵2 𝒙 = −𝑥
𝐶 𝒙 = − ln 𝑥
𝐷 𝜽 = 𝐷 𝛼, 𝛽
= 𝛼 ln𝛽 − ln Γ 𝛼

𝑒𝛼 ln 𝑥−𝛽𝑥−ln 𝑥+𝛼 ln 𝛽−ln Γ 𝛼

Canonical form: Aj( ) = j

Poisson distribution:

𝑓 𝑥ȁθ = 𝑓 𝑥ȁ𝜇 =
𝜇𝑥

𝑥!
𝑒−𝜇 = 𝑒 ln 𝜇 ⋅𝑥−ln 𝑥!−𝜇 ; 𝑥 = 0,1, …

= 𝑒 ln 𝜇 ⋅𝑥−ln Γ 𝑥+1 −𝜇

𝐴1 𝜽 = 𝐴 𝜇 = ln 𝜇
𝐵1 𝒙 = 𝐵 𝑥 = 𝑥
𝐶 𝒙 = − ln 𝑥 !
𝐷 𝜽 = 𝐷 𝜇 = −𝜇



Univariate normal distribution:

𝑓 𝑥ȁθ = 𝑓 𝑥ห𝜇, 𝜎2 = 2𝜋𝜎2 −0.5𝑒
−
𝑥−𝜇 2

2𝜎2 ; −∞ < 𝑥 < ∞

= 𝑒− Τ1 2𝜎2 ⋅𝑥2+ Τ𝜇 𝜎2 ⋅𝑥−0.5 ln 2𝜋 − ൗ𝜇2 2𝜎2 −0.5⋅ln 𝜎2

𝐴1 𝜽 = 𝐴1 𝜇, 𝜎2 =
1

2𝜎2

𝐴2 𝜽 = 𝐴2 𝜇, 𝜎2 =
𝜇

𝜎2

𝐵1 𝒙 = −𝑥2

𝐵2 𝒙 = 𝑥
𝐶 𝒙 = −0.5 ln 2𝜋

𝐷 𝜽 = 𝐷 𝜇, 𝜎2 = −
𝜇2

2𝜎2
− 0.5 ⋅ ln 𝜎2



Bernoulli distribution:

𝑓 𝑥ȁθ = 𝑓 𝑥ȁ𝑝 = 𝑝𝑥 1 − 𝑝 1−𝑥 ; 𝑥 = 0,1

= 𝑒 ln 𝑝 ⋅𝑥− ln 1−𝑝 ⋅𝑥+ln 1−𝑝 = 𝑒
ln

𝑝
1−𝑝 ⋅𝑥+ln 1−𝑝

𝐴1 𝜽 = 𝐴 𝑝 = ln
𝑝

1 − 𝑝

𝐵1 𝒙 = 𝐵 𝑥 = 𝑥
𝐶 𝒙 = 0
𝐷 𝜽 = 𝐷 𝑝 = ln 1 − 𝑝

Exercise: The binomial distribution belongs to the exponential class if 

(conditioned on) the number of trials is fixed. Why?



Conjugate families of distributions when the likelihood belongs to the 

exponential class

𝑓 𝒙ȁ𝜽 = 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙 +𝐶 𝒙 +𝐷 𝜽

pdf (or pmf ) of sample point distribution :

Likelihood from sample

of n observations:

ෑ

𝑖=1

𝑛

𝑓 𝒙𝑖ȁ𝜽 =ෑ

𝑖=1

𝑛

𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙𝑖 +𝐶 𝒙𝑖 +𝐷 𝜽

= 𝑒
σ𝑖=1
𝑛 σ𝑗=1

𝑘 𝐴𝑗 𝜽 𝐵𝑗 𝒙𝑖 +𝐶 𝒙𝑖 +𝐷 𝜽

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +σ𝑖=1
𝑛 𝐶 𝒙𝑖 +𝑛⋅𝐷 𝜽

Hence the multivariate array {X1, … , Xn } with independent marginal 

distributions all with density f (x |  ) also belongs to the exponential class.

𝐵𝑗
′ 𝒙1, … , 𝒙𝑛 𝐶′ 𝒙1, … , 𝒙𝑛



where 1 , … , k + 1 are the hyperparameters of this prior distribution and K( ) is a 

function of 1 , … , k + 1 only .

Now, mimic the structure of the exponential class (for the marginal distributions or 

the likelihood) and define the prior density for  as

𝑓′ 𝜽ห𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽 +𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1

∝ 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽



Then the posterior becomes

𝑓′′ 𝜽ห 𝒙 , 𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1 = 𝑓′′ 𝜽ห𝒙1, … , 𝒙𝑛; 𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

∝ෑ

𝑖=1

𝑛

𝑓 𝒙𝑖ȁ𝜽

likelihood

⋅ 𝑓′ 𝜽ห𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1

= 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +σ𝑖=1
𝑛 𝐶 𝒙𝑖 +𝑛⋅𝐷 𝜽 ⋅ 𝑒σ𝑗=1

𝑘 𝐴𝑗 𝜽 ⋅𝛼𝑗+𝛼𝑘+1⋅𝐷 𝜽 +𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1

= 𝑒σ𝑖=1
𝑛 𝐶 𝒙𝑖 𝑒𝐾 𝛼1,…,𝛼𝑘,𝛼𝑘+1 𝑒σ𝑗=1

𝑘 𝐴𝑗 𝜽 σ𝑖=1
𝑛 𝐵𝑗 𝒙𝑖 +𝛼𝑗 + 𝑛+𝛼𝑘+1 ⋅𝐷 𝜽

∝ 𝑒σ𝑗=1
𝑘 𝐴𝑗 𝜽 σ𝑖=1

𝑛 𝐵𝑗 𝒙𝑖 +𝛼𝑗 + 𝑛+𝛼𝑘+1 ⋅𝐷 𝜽

i.e. the posterior distribution is of the same form as the prior distribution but with 

hyperparameters

instead of

𝛼1 + σ𝑖=1
𝑛 𝐵1 𝒙𝑖 , … , 𝛼𝑘 + σ𝑖=1

𝑛 𝐵𝑘 𝒙𝑖 , 𝛼𝑘+1 + 𝑛

𝛼1, … , 𝛼𝑘 , 𝛼𝑘+1



Some common families (within or outside the exponential family):

Conjugate prior Sample distribution Posterior

Beta Binomial Beta

Normal Normal, known  2 Normal

Gamma Poisson Gamma

Pareto Uniform Pareto

𝜋~𝐵𝑒𝑡𝑎 𝛼, 𝛽 𝜋ȁ𝑥~𝐵𝑒𝑡𝑎 𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥𝑋~𝐵𝑖𝑛 𝑛, 𝜋

𝜇~𝑁 𝜑, 𝜏2 𝑋𝑖~𝑁 𝜇, 𝜎2 𝜇ȁ ǉ𝑥~𝑁
𝜎2

𝜎2 + 𝑛𝜏2
𝜑 +

𝑛𝜏2

𝜎2 + 𝑛𝜏2
ǉ𝑥,

𝜎2𝜏2

𝜎2 + 𝑛𝜏2

𝜆~𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 𝑋𝑖~𝑃𝑜 𝜆 𝜆ȁσ𝑥𝑖~𝐺𝑎𝑚𝑚𝑎 𝛼 + σ𝑥𝑖 , 𝛽 + 𝑛

𝑝 𝜃 ∝ 𝜃−𝛼; 𝜃 ≥ 𝛽 𝑋𝑖~𝑈 0, 𝜃 𝑞 𝜃; x ∝ 𝜃− 𝛼+𝑛 ; 𝜃 ≥ max 𝛽, 𝑥 𝑛



Exercise 4.27

෤𝜇 =

𝜇1 = 109.4 with prob. 0.05 (= 𝑝 𝜇1 )

𝜇2 = 109.7 with prob. 0.20 (= 𝑝 𝜇2 )

𝜇3 = 110.0 with prob. 0.50 (= 𝑝 𝜇3 )

𝜇4 = 110.3 with prob. 0.20 (= 𝑝 𝜇4 )

𝜇5 = 110.6 with prob. 0.05 (= 𝑝 𝜇5 )

Discretized normal 

distribution?

Data: y = {108.0 109.0 107.4 109.6 112.0} ~𝑁 ෤𝜇, 𝜎2 ≈ 4

Prior distribution of ෤𝜇:



Sample point density: 𝑓 𝑦ȁ ෤𝜇 = 𝜇 = 2𝜋𝜎2 −0.5𝑒
−
𝑦−𝜇 2

2𝜎2 ; 𝜎2 = 4

Likelihood: L 𝜇; 𝒚 =ෑ

𝑗=1

𝑛=5

𝑓 𝑦𝑗ȁ ෤𝜇 = 𝜇 =ෑ

𝑗=1

𝑛=5

2𝜋𝜎2 −0.5𝑒
−

𝑦𝑗−𝜇
2

2𝜎2

= 2𝜋𝜎2 −0.5𝑛𝑒
−

1
2𝜎2

σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

= 8𝜋 −2.5𝑒−
1
8
σ𝑗=1
5 𝑦𝑗−𝜇

2

= 8𝜋 −2.5𝑒−
1
8 108−𝜇 2+ 109−𝜇 2+ 107.4−𝜇 2+ 109.6−𝜇 2+ 112−𝜇 2



Posterior distribution of ෤𝜇:

𝑓′′ 𝜇 𝒚 =
𝐿 𝜇; 𝒚 ∙ 𝑓′ 𝜇

σ𝑖=1
5 𝐿 𝜇𝑖; 𝒚 ∙ 𝑓′ 𝜇𝑖

=
2𝜋𝜎2 −0.5𝑛𝑒

−
1

2𝜎2
σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

∙ 𝑓′ 𝜇

σ𝑖=1
5 2𝜋𝜎2 −0.5𝑛𝑒

−
1

2𝜎2
σ𝑗=1
𝑛 𝑦𝑗−𝜇𝑖

2

∙ 𝑓′ 𝜇𝑖

=
𝑒
−

1
2𝜎2

σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

∙ 𝑓′ 𝜇

σ𝑖=1
5 𝑒

−
1

2𝜎2
σ𝑗=1
𝑛 𝑦𝑗−𝜇𝑖

2

∙ 𝑓′ 𝜇𝑖

=

=
𝑒−

1
8
σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

∙ 𝑓′ 𝜇

𝑒−
1
8∙ 108−109.4 2+ 109−109.4 2+ 107.4−109.4 2+ 109.6−109.4 2+ 112−109.4 2

∙ 0.05 +

𝑒−
1
8∙ 108−109.4 2+ 109−109.7 2+ 107.4−109.7 2+ 109.6−109.7 2+ 112−109.7 2

∙ 0.20 +

𝑒−
1
8∙ 108−110.0 2+ 109−110.0 2+ 107.4−110.0 2+ 109.6−110.0 2+ 112−110.0 2

∙ 0.50 +

𝑒−
1
8∙ 108−110.3 2+ 109−110.3 2+ 107.4−110.3 2+ 109.6−110.3 2+ 112−110.3 2

∙ 0.20 +

𝑒−
1
8∙ 108−110.6 2+ 109−110.6 2+ 107.4−110.6 2+ 109.6−110.6 2+ 112−110.6 2

∙ 0.05

=
𝑒
−

1
2𝜎2

σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

∙ 𝑓′ 𝜇

𝑒−
1
8
∙12.92 ∙ 0.05 + 𝑒−

1
8
∙13.97 ∙ 0.20 + 𝑒−

1
8
∙15.92 ∙ 0.50 + 𝑒−

1
8
∙18.77 ∙ 0.20 + 𝑒−

1
8
∙22.52 ∙ 0.05

≈
𝑒
−

1
2𝜎2

σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

∙ 𝑓′ 𝜇

0.1353



⇒

f’’ 𝜇1ȁ𝒚 = 𝑓′′ 109.4ȁ𝒚 ≈
𝑒
−
1
8 108−109.4 2+ 109−109.4 2+ 107.4−109.4 2+ 109.6−109.4 2+ 112−109.4 2

⋅0.05

0.1353
≈

0.0735

f’’ 𝜇2ȁ𝒚 = 𝑓′′ 109.7ȁ𝒚 ≈
𝑒
−
1
8

108−109.7 2+ 109−109.7 2+ 107.4−109.7 2+ 109.6−109.7 2+ 112−109.7 2
⋅0.20

0.1353
≈

0.2578

f’’ 𝜇3ȁ𝒚 = 𝑓′′ 110.0ȁ𝒚 ≈
𝑒
−
1
8 108−110.0 2+ 109−110.0 2+ 107.4−110.0 2+ 109.6−110.0 2+ 112−110.0 2

⋅0.50

0.1353
≈

0.5051

f’’ 𝜇4ȁ𝒚 = 𝑓′′ 110.3ȁ𝒚 ≈
𝑒
−
1
8 108−110.3 2+ 109−110.3 2+ 107.4−110.3 2+ 109.6−110.3 2+ 112−110.3 2

⋅0.20

0.1353
≈

0.1415

f’’ 𝜇5ȁ𝒚 = 𝑓′′ 110.6ȁ𝒚 ≈
𝑒
1
8

108−110.6 2+ 109−110.6 2+ 107.4−110.6 2+ 109.6−110.6 2+ 112−110.6 2
⋅0.05

0.1353
≈

0.0221

prior dist.



𝐸prior ෤𝜇 = 𝐸 ෤𝜇 = 109.4 ⋅ 0.05 + 109.7 ⋅ 0.20 + 110.0 ⋅ 0.50

+110.3 ⋅ 0.20 + 110.6 ⋅ 0.05 = 110 (obvious?)

𝑉𝑎𝑟prior ෤𝜇 = 𝑉𝑎𝑟 ෤𝜇 = 𝐸 ෤𝜇2 − 𝐸 ෤𝜇
2

= 109. 42 ⋅ 0.05 + 109. 72 ⋅ 0.20 + 110. 02 ⋅ 0.50

+110. 32 ⋅ 0.20 + 110. 62 ⋅ 0.05 − 1102 = 0.072

𝐸posterior ෤𝜇 = 𝐸 ෤𝜇ȁ𝒚

= 109.4 ⋅ 0.07348. . . +109.7 ⋅ 0.25780. . . +110.0 ⋅ 0.50508. . .

+110.3 ⋅ 0.14148. . . +110.6 ⋅ 0.02213. . . ≈ 109.9

𝑉𝑎𝑟posterior ෤𝜇 = 𝑉𝑎𝑟 ෤𝜇ȁ𝒚 = 𝐸 ෤𝜇2ȁ𝒚 − 𝐸 ෤𝜇ȁ𝒚
2

≈ 109. 42 ⋅ 0.07348. . . +109. 72 ⋅ 0.25780. . . +110. 02 ⋅ 0.50508. . .

+110. 32 ⋅ 0.14148. . . +110. 62 ⋅ 0.02213. . . −109. 72 ≈ 0.066



Exercise 4.28

Prior distribution:  ෤𝜇~𝑁 110,0.4 = 𝑁 𝑚′, 𝜎′2

𝑝 𝜇 = 𝑓′ 𝜇 = 2𝜋𝜎′2 −0.5𝑒
−
𝜇−𝑚′ 2

2𝜎′2 = 2𝜋 ⋅ 0.4 −0.5𝑒−
𝜇−110 2

0.8Prior density:

Data: y = {108.0 109.0 107.4 109.6 112.0} ~𝑁 ෤𝜇, 𝜎2 ≈ 4

ǉ𝑦 =
108 + 109 + 107.4 + 109.6 + 112

5
= 109.2

𝑠2 =
1

4
෍

1

5

𝑦𝑗 − 109.2
2
= 3.18



𝑓′′ 𝜇ȁ𝒚 =
𝐿 𝜇; 𝒚 ⋅ 𝑓′ 𝜇

∞−׬
∞

𝐿 𝜇; 𝒚 ⋅ 𝑓′ 𝜇 𝑑𝜇
=

𝐿 𝜇; 𝒚 from

Exercise 4.27
=

=
2𝜋𝜎2 −0.5𝑛𝑒

−
1

2𝜎2
σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

⋅ 2𝜋𝜎′2 −0.5𝑒
−
𝜇−𝑚′ 2

2𝜎′2

∞−׬
∞

2𝜋𝜎2 −0.5𝑛𝑒
−

1
2𝜎2

σ𝑗=1
𝑛 𝑦𝑗−𝜇

2

⋅ 2𝜋𝜎′2 −0.5𝑒
−
𝜇−𝑚′ 2

2𝜎′2 𝑑𝜇

=
"Completion
of squares"

=

= 2𝜋𝜎′′2 −0.5𝑒
−
𝜇−𝑚′′ 2

2𝜎′′2

where 

𝑚′′ =
Τ1 𝜎′2 ⋅ 𝑚′ + Τ𝑛 𝜎2 ⋅ 𝑚

Τ1 𝜎′2 + Τ𝑛 𝜎2
=

Τ1 𝜎′2 ⋅ 𝑚′ + Τ𝑛 𝜎2 ⋅ ǉ𝑦

Τ1 𝜎′2 + Τ𝑛 𝜎2

=
Τ1 0.4 ⋅ 110 + Τ5 4 ⋅ 109.2

Τ1 0.4 + Τ5 4
≈ 109.7

𝜎′′2 =
𝜎2 ⋅ 𝜎′2

𝜎2 + 𝑛 ⋅ 𝜎′2
=

4 ⋅ 0.4

4 + 5 ⋅ 0.4
≈ 0.267

Thus, the posterior distribution is N(m’’=109.7,’’2=0.267)



Interpretation of prior distributions

Prior distribution for a proportion  was taken up at meeting 2!

Prior distribution for the mean of a population with continuous variation

Very often we have reasons to work with normally distributed data to make 

inference about the population mean ෤𝜇.

If the population variance is (assumed to be) known =  2, we can – as was 

demonstrated in Exercise 4.28 – use the normal distribution as a conjugate prior 

distribution.

From sampling theory we know that – setting aside finite population corrections 

– the variance of the sample mean is the population variance divided by the 

sample size

𝑉𝑎𝑟 ෤𝑦ȁ𝜎2, 𝑛 =
𝜎2

𝑛



If 𝜎′2 represents the prior variance of the unknown ෤𝜇 define a new parameter n’

as
𝑛′ =

𝜎2

𝜎′2

Hence, 𝜎′2 =
𝜎2

𝑛′

This can be interpreted as the variance 𝜎′2 of a sample mean based on n’ observations 

taken from the population with population variance  2.

n‘ then plays the role of the size of a virtual sample taken from the population on 

which the prior knowledge stems. 

Note that it is not necessary for n’ to be integer-valued, even if it often suffices to 

approximate with an integer.  

෤𝜇~𝑁 𝑚′,
𝜎2

𝑛′

For the prior and posterior distribution we may thus write

෤𝜇ȁ𝒚~𝑁 𝑚′′,
𝜎2

𝑛′′
where 𝑛′′ =

𝜎2

𝜎′′2
= 𝑛′ + 𝑛



Exercise 4.28 with alternative prior parametrization

Prior distribution:  ෤𝜇~𝑁 110,0.4 = 𝑁 𝑚′, 𝜎′2 = 𝑁 𝑚′, Τ𝜎2 10 since  2 = 4

𝑓′′ 𝜇ȁ𝒚 = 2𝜋𝜎′′2 −0.5𝑒
−
𝜇−𝑚′′ 2

2𝜎′′2 [from the previous solution]

where 

𝑚′′ =
Τ1 𝜎′2 ⋅𝑚′+ Τ𝑛 𝜎2 ⋅𝑚

Τ1 𝜎′2 + Τ𝑛 𝜎2
=

Τ𝑛′ 𝜎2 ⋅𝑚′+ Τ𝑛 𝜎2 ⋅𝑚

Τ𝑛′ 𝜎′2 + Τ𝑛 𝜎2
=

All instances

of Τ1 𝜎2 can

be removed

=

=
𝑛′ ⋅ 𝑚′ + 𝑛 ⋅ 𝑚

𝑛′ + 𝑛
=
10 ⋅ 110 + 5 ⋅ 109.2

10 + 5
≈ 109.7

𝜎′′2 =
𝜎2 ⋅ 𝜎′2

𝜎2 + 𝑛 ⋅ 𝜎′2
=

𝜎2 ⋅ Τ𝜎2 𝑛′

𝜎2 + 𝑛 ⋅ Τ𝜎2 𝑛′
=

4 ⋅ 0.4

4 + 5 ⋅ 0.4
=
1.6

6
≈ 0.267 =

𝜎2

𝑛′′

⇒ 𝑛′′ =
𝜎2

Τ1.6 6
=
24

1.6
= 15

And… 𝑛′′ = 𝑛′ + 𝑛 = 10 + 5



A quick look at (an)other theory for understanding beliefs – part I 

Consider the following case (from forensic science):

An attempt of burglary is recorded on a CCTV camera and it stands clear that 

the perpetrator is using a crowbar when trying to break the door to the premises 

(target of the intended burglary). The face of the perpetrator cannot be seen.

The perpetrator suddenly runs away leaving the crowbar behind him. Some time 

later the Police arrives to the crime scene and seizes the crowbar. Inspecting it 

more in detail reveals that it has a blue colour (crowbars sold are either painted –

often in red or blue – or unpainted). 

In the investigation interest is taken in a certain Mr Johnson, who is a well-

reputed burglar. A visit is paid at his home, but he is not there. His wife – who 

opened the door - is asked whether Mr Johnson is in possession of a crowbar 

and what it looks like. She says he has a crowbar, and it is not painted.



What do we have here?

We have a crowbar, which we know was used for the burglary attempt thanks to the 

CCTV take-up.

Our question is: Is it Mr Johnson’s crowbar?

To structure things:

Let A denote the statement “The crowbar belongs to Mr Johnson”

Let B denote “The crowbar is painted in blue”

Then we have a witness’ statement:  C = “Mr Johnson’s crowbar is unpainted”

How do B and C influence our belief in A ?



In terms of probabilities (using the subjective interpretation):

Why was Mr Johnson interesting from the beginning?

𝑃 𝐴 𝐼 must have been sufficiently high (where I is the background 

information available – before hearing what the witness (Mrs Johnson) said)

Is B relevant for A, i.e. is 𝑃 𝐴 𝐵, 𝐼 ≠ 𝑃 𝐴 𝐼 ?

A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

Are A and B conditionally dependent given C, 

i.e. is 𝑃 𝐴, 𝐵 𝐶, 𝐼 ≠ 𝑃 𝐴 𝐶, 𝐼 ∙ 𝑃 𝐵 𝐶, 𝐼 ?

There is a “problematic” difference between

C = “Witness says: Mr Johnson’s crowbar is unpainted”

and (what may be confused with)

C’ = “Mr Johnson’s crowbar is unpainted”



A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

C’ = “Mr Johnson’s crowbar is unpainted”

For…

𝑃 𝐴, 𝐵 𝐶′, 𝐼 = 0 The crowbar cannot belong to Mr Johnson (A) 

and be blue (B) if Mr Johnson’s crowbar is unpainted (C’)

but…

𝑃 𝐴, 𝐵 𝐶, 𝐼 is more difficult. In what way would the relevance between A 

and B be affected by a witness statement?  

…and relevance with whom?



A =“The crowbar belongs to Mr Johnson”

B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”

C’ = “Mr Johnson’s crowbar is unpainted”

Decompose 𝑃 𝐴, 𝐵 𝐶, 𝐼 using 𝐶′ and ¬𝐶′:

𝑃 𝐴, 𝐵 𝐶, 𝐼 = 𝑃 𝐴, 𝐵 𝐶′, 𝐶, 𝐼 ∙ 𝑃 𝐶′ 𝐶, 𝐼 + 𝑃 𝐴, 𝐵 ¬𝐶′, 𝐶, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼 =

= 0 ∙ 𝑃 𝐶′ 𝐶, 𝐼 + 𝑃 𝐴, 𝐵 ¬𝐶′, 𝐶, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼

If ¬𝐶′ holds, i.e. if Mr Johnson’s crowbar is painted, then 𝐶′ is no longer 

relevant (on its own) for A and B and we may write

𝑃 𝐴, 𝐵 𝐶, 𝐼 = 𝑃 𝐴 ¬𝐶′, 𝐼 ∙ 𝑃 𝐵 ¬𝐶′, 𝐼 ∙ 𝑃 ¬𝐶′ 𝐶, 𝐼

≈ 𝑃 𝐵 𝐼 Relates to the probability 

that the witness is lying

Hence, since 𝑃 𝐴, 𝐵 𝐶, 𝐼 ≠ 𝑃 𝐴 𝐶, 𝐼 ∙ 𝑃 𝐵 𝐶, 𝐼 A and B are conditionally 

dependent given 𝐶


