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The exponential class of distributions

A (family) of probability distribution(s) belong(s) to the k-parameter exponential
class of distributions if the probability density (or mass) function can be written:

£(x]6) = o Zj=1A;j(8)B;(x)+C(x)+D(6)

where

c 0=(0,,...,6)

« A(O),...,A(8)and D(8@) are functions of the parameter donly (and not of x )
* By(Xx), ..., B,(x)and C(x) are functions of x only (and not of &)



Examples

Two parameter Gamma distribution (univariate), shape and rate
parameterization:

a

f(x]6) = f(x|la, B) = %x“‘le‘ﬁx ;x>0

— e(a—l)(ln x)—Bx+aln f-InT(a) — e? Inx—Bx—Inx+aln f—InT(a)

Parametric form 1: e(@-Dnx)-Bx+alnf-InT(a) A,(0) = A;(a,B) =a —1
Ay(0) = Ay(a,B) =B
B;(x) =Inx
B(x) = —x
Clx) =0
D(6) = D(a,p)
=alnpf —InT (a)



Parametric form 2:  e*Inx—Bx-Inx+alnf-InT(@) A (9) = A;(a,p) = «a

AZ(B) = AZ(auB) = :8

B;(x) =Inx
B,(x) = —x
Canonical form: A,(8) = 4 C(x) =—Inx
D(0) = D(a,pB)

=alnf —InT (a)

Poisson distribution:

X

FGxl8) = fxly) = e = elnmwatnxiou; y = o1,

(: e(ln w)-x—1In F(x+1)—/,t)
A1(0) = A(w) =Inp
B;,(x) =B(x) =x
C(x) =—Inx!
D(@) =D(u) =—u



Univariate normal distribution:

(x—w)?
f(x|8) = f(x|w,02) = @ra?) %5 207 ; —c0o <x <

_ e—(1/(202))-x2+(u/02)-x—0.5 In(2m)-u?/(202)-0.51n o2

1
A1(0) = A (u,0%) = E)

U
A,(0) = Az(.U,UZ) = F

B, (x) = —x?
B,(x) = x
C(x) = —0.5In(2n)
2
D(0) = D(u,0?) = — X 05-Ince?

202



Bernoulli distribution:

fx10) = f(xlp) =p*A —=p)*™* ; x=01

_ ,(np)a—n(i-p)a+in(i-p) _ ,(In(755))x+nC-p)

A,(6) = A(p) = 1n<1 fp)
Bi(x) =B(x) =x
Cx)=0

D(@) =D(p) =In(1—p)

Exercise: The binomial distribution belongs to the exponential class if
(conditioned on) the number of trials is fixed. Why?



Conjugate families of distributions when the likelihood belongs to the
exponential class

k
pdf (or pmf ) of sample point distribution :  f(x|@) = eZi=14i(@)E;N)+CCO+D(E)

n

n
k
Likelihood from sample Hf(xile) — 1_[ p2j=14;(0)Bj(x)+C(x)+D(6)
i=1

of n observations: i=1

_ (i 4000 +cx+D(6))

— pZf=14/(0) Ty Bj(xp)+ZT, C(x)+n-D(6)
1 Y y %__I

Bi({x1, ., %)) C'({Xy, e, Xn})

Hence the multivariate array {X,, ... , X, } with independent marginal
distributions all with density f (x | @) also belongs to the exponential class.



Now, mimic the structure of the exponential class (for the marginal distributions or
the likelihood) and define the prior density for @ as

f'(8lay, ..., ar, ags1)

— ZI'C=1 Aj(0)-aj+agy1-D(O)+K (a1, AL, Ak 41)
= e~“]

o erﬂ Aj(0)-aj+ags,1-D(0)

where «, , ..., &, ; are the hyperparameters of this prior distribution and K( ) is a
functionof o , ..., o, Only.



Then the posterior becomes

f,’(g {X}, A1) oeny A, ak+1) = f”(0|x1’ ey Xy Ay ey Ay ak+1)

x l th(xile) | f,(0|a17 "'rak'ak+1)
i=1

likelihood

— o2 Aj(O) Ty Bj(x)+E, CO)+neD(8) | Efo; Aj(0)-ajt s D(O)+K (s, @k Wkt 1)
— eZ?=1 C(xi)eK(al,...,ak,akﬂ)eZ?:l Aj(0) (X, Bj(xp)+aj)+(n+ag41)-D(6)

oc e2)=14jO)(ZiLy Bj(x)+a;)+(n+ak.1)-D(6)

I.e. the posterior distribution is of the same form as the prior distribution but with
hyperparameters N
a; + 21 Bi(xi), o, o + X Br(X), a1 10

instead of

A1y oeey A, Ao 31



Some common families (within or outside the exponential family):

Conjugate prior Sample distribution Posterior
Beta Binomial Beta
n~Beta(a, B) X~Bin(n, ) m|x~Beta(a + x,f +n — x)
Normal Normal, known o2 Normal

2 2 2.2
u~N(p,7%) X;~N(u, 02) v © nt? o’

l Hlx~N 02+nrz(p+02+nrzx'02+nrz

Gamma Poisson Gamma
A~Gamma(a, ) X;~Po(A) A xi~Gamma(a + Y.x;, 5 + n)
Pareto Uniform Pareto

p(0) x0~% 6 =p X;~U(0,6) q(0;%) « =@ ;9 > max(B, x()



Exercise 4.27

27. A production manager is interested in the mean wei

cess. He feels that the weight of iteras from the process is normally

ght of items turned out by a particular pro-
distributed with mean i

and that fi is either 109.4, 109.7, 110.0, 110.3, or 110.6. The production manager assesses prior

probabilities of P( fi=109.4) = 0.05, P(f = 109.7)
and P(fi = 110.6) = 0.05. From past experience, hel

is 62 = 4. He randomly selects five items from the process and

lowing results: 108, 109, 107.4, 109.6, and 112. Find th
tribution and compute the means and the variances o

Prior distribution of ji:

0.5

0.4

(1, = 109.4 with prob. 0.05 (= p(uy))
U, = 109.7 with prob. 0.20 (= p(u,)) s
ps; = 110.0 with prob. 0.50 (= p(us3)) ]
s = 110.3 with prob. 0.20 (= p(us))
\4s = 110.6  with prob. 0.05 (= p(us))

03

=
[l

02

01

Data: y = {108.0 109.0 107.4 109.6 112.0}

T T
1094 1096 1098 1100 1102 1104 1106

n

~N(fi,0% = 4)

=0.20, P(ji=110.0) = 0.50, P(fi =110.3) = 0.20,
is willing to assume that the process variance
weighs them, with the fol-
e production manager’s posterior dis-
f the prior and posterior distributions.

Discretized normal
distribution?



(y—u)?

Sample point density: f(y|@ = p) = 2no?) %% 202 ; g2 =4

= = (=)’
Likelihood: L(u;y) = 1_[ flyjla=u) = H(Znaz)—O-Se‘ 202
j=1 j=1

1 n 2
— (27.[0.2)—0.5716_?2]:1(30—#) — (871.)—2_56—%25-’:1(3/],_”)2

= (8ﬂ)—2.se—%[(108—/4)2+(109—u)2+(1o7.4—u)2+(109.6—u)2+(112—u)2]



Posterior distribution of ji:

. . f! 2\—0.5n _%Z}Ll(J’j_ﬂ)Z. !
Ly) - fw _ @2ro”)"e 20 f(w

' (uly) = T " z
L) WD 55 (gngzy-osnem g Bm 0"

e 2022 =00

1€ 202 Zjealjw) (i)
o8B0 ()

1[(108 109.4)2+(109-109.4)2+(107.4—109.4)2+(109.6—109.4)%2+(112-109.4)2]

e 8 - 0.05 +
1

— =[(108-109.4)24+(109-109.7)2+(107.4—109.7)%2+(109.6—109.7)2+(112-109.7)2

Al )2+( )2+( )2+( )2+( 21, 0.20 +

1
—=[(108-110.0)24(109-110.0)2+(107.4—110.0)24+(109.6—110.0)2+(112—-110.0)2
Al )2+( )2+( )2+( )2+( 21, 0.50 +

1

e 8[(108 110.3)2+(109-110.3)2+(107.4—110.3)2+(109.6—110.3)%2+(112-110.3)?] . 0.20 +

e 8[(108 110.6)2+(109-110.6)2+(107.4—110.6)2+(109.6—110.6)%2+(112-110.6)?] . 0.05

1 on 2
e 2 PO p

1 1 1 1 1
e 81292 . 0054+ 81397 .020+e 81°92.050+ e 8877.0.20 + e 8%%°2.0.05

e 22 T 0y
0.1353

~




=

_1
8

[(108-109.4)2+(109-109.4)%2 +(107.4-109.4)%+(109.6—109.4)% +(112—109.4)

2
]-0.05

lusly) = £'(109.4]y) ~ =
0.0735

e

_1
8

0.1353

Q

[(108-109.7)2+(109-109.7)%+(107.4-109.7)?+(109.6—109.7) % +(112—109.7)?| 0.20

luzly) = £'(109.7|y) =
0.2578

Flusly) = £(110.0]y) ~

e

_1
8

0.1353

[(108—110.0)%2+(109-110.0)%+(107.4—110.0)% +(109.6-110.0)%+(112—110.0

Q

050

0.5051

Flugly) = f(1103]y) = =

_1
8

0.1353

[(108—110.3)%2+(109-110.3)%2+(107.4—110.3)2+(109.6-110.3)%+(112—110.3

Q

1020

0.1415

%[(108—110.6)2+(109—110.6)2+(107.4-—110.6)2+(109.6—110.6)2+(112—110.6)

0.1353

Q

2
Lo.os _

Flusly) = f(110.6]y) ~ =
0.0221

0.5

0.4

0.3

0.2

0.1

T T
1094 1096 1098 1100 1102 1104 1106
N

prior dist.

0.1353

~



Eprior(® = E(@) = 109.4 - 0.05 + 109.7 - 0.20 + 110.0 - 0.50

+110.3-0.20 + 110.6 - 0.05 = 110 (obvious?)

Varprior(@ = Var(@) = E@2) - (E@)°

= 109.4% - 0.05 + 109.7% - 0.20 + 110.0% - 0.50
+110.3%-0.20 + 110.6% - 0.05 — 110% = 0.072

Eposterior(ﬁ) = E(ily)
=109.4-0.07348...+109.7 - 0.25780...+110.0 - 0.50508...
+110.3 - 0.14148...+110.6 - 0.02213...~ 109.9

3 3 3 Y
Varposterior(® = Var(ily) = E@ly) — (E(@ly))

~ 109.4% - 0.07348...+109.72% - 0.25780...+110. 0% - 0.50508...

+110.3%-0.14148...+110.6% - 0.02213...—109.7? =~ 0.066



Exercise 4.28

In Exercise 27, if [i is assumed to be continuous and if the prior distribution for [i is a nor-
mal distribution with mean 110 and variance 0.4, find the posterior distribution.

Prior distribution: i~N(110,0.4) = N(m',d'?)

(u—mr)? (u—110)2

Prior density: p(u) = f'(w) = 2rno'?) %% 267 = (2m-0.4)" %%~ 038

Data: y = {108.0 109.0 107.4 109.6 112.0} ~N(@ 02 = 4)

108+ 109 + 107.4 + 109.6 + 112
y = - =109.2

5
1
52 = ZZ(yj ~109.2)" = 3.18
1



Fry) = Lusy) f ) ‘<L(u;y) from >_
- ffoooL(u; y) - f'(u)du \Exercise 4.27 B

1m0 )2 _(u=mn*
B (27.[0.2)—0.5')’18 202 21:1(3’] ‘Ll) . (27.[0.’2)—0.56 2012 B <"C0mplet10n> 3
- (u-mn? \of squares"/

1 wn 2
fjooo(znO-Z)—O.Sne_ﬁZj=1(3’j_n“) . (ZNU'Z)—O.SG_WCIM

_(u—mr)?
— (27.[0-”2)—058 20112

where

, @/a?)-m'+(n/o?)-m (1/d"?)-m'+ (n/c?) -y

(1/02) + (n/0?) (1/02) + (n/o?)
_(1/04) - 110 + (5/4) - 109.2 _ 1007

(1/0.4) + (5/4)

o’ .0'? 4.0.4

"2 = = — ~ 0.267
g g’+n-d'?2 4+5-04

Thus, the posterior distribution is N(m 7’=109.7,5°2=0.267)




Interpretation of prior distributions
Prior distribution for a proportion was taken up at meeting 2!

Prior distribution for the mean of a population with continuous variation

Very often we have reasons to work with normally distributed data to make
inference about the population mean f.

If the population variance is (assumed to be) known = &2, we can — as was
demonstrated in Exercise 4.28 — use the normal distribution as a conjugate prior

distribution.

From sampling theory we know that — setting aside finite population corrections
— the variance of the sample mean is the population variance divided by the

sample size

0.2

Var(?laz,n) =—



If o' represents the prior variance of the unknown /i define a new parameter »’

as o2
, —
n = 52
2
0}
Hence, o¢'?% = —
n

This can be interpreted as the variance o' of a sample mean based on »’ observations
taken from the population with population variance o2.

n ‘ then plays the role of the size of a virtual sample taken from the population on
which the prior knowledge stems.

Note that it is not necessary for n’ to be integer-valued, even if it often suffices to
approximate with an integer.

For the prior and posterior distribution we may thus write

2 2
i~N g i|ly~N s wheren'' = o =n"+n
a~N|m,— fly~N{m 7 ~ o2



Exercise 4.28 with alternative prior parametrization
Prior distribution: ~N(110,0.4) = N(m',¢'?) = N(m’,5%/10) since o2 =4

_(u—mun)?
f'(uly) = 2mo'2)~%5¢™ 20172 [from the previous solution]

where

o _ (ePymr(n/o?)m _ (w/g?)mr+(n/o?)m

2
(1/0r?)+(n/o?) (n1/o12)+(n/c?) of 1/0“ can

be removed

All instances>

_n'-m'+n-m_10-110+5-109.2

— — ~ 109.7
n' +n 10+ 5
g2 .¢g'? o - (c%/n' 4.0.4 1.6 o2
0'”2: = ( / ), = :_z0267:7
o2+n-0'%2 o%24+n-(c%2/n) 4+4+5-04 6 n
. o2 24
=>n 15

16/6 16 And... n"=n"+n=10+5



A quick look at (an)other theory for understanding beliefs — part |

Consider the following case (from forensic science):

An attempt of burglary is recorded on a CCTV camera and it stands clear that
the perpetrator is using a crowbar when trying to break the door to the premises
(target of the intended burglary). The face of the perpetrator cannot be seen.

The perpetrator suddenly runs away leaving the crowbar behind him. Some time
later the Police arrives to the crime scene and seizes the crowbar. Inspecting it
more in detail reveals that it has a blue colour (crowbars sold are either painted —
often in red or blue — or unpainted).

In the investigation interest is taken in a certain Mr Johnson, who is a well-
reputed burglar. A visit is paid at his home, but he is not there. His wife — who
opened the door - is asked whether Mr Johnson is in possession of a crowbar
and what it looks like. She says he has a crowbar, and it is not painted.



What do we have here?

We have a crowbar, which we know was used for the burglary attempt thanks to the
CCTV take-up.

Our question is: Is it Mr Johnson's crowbar?

To structure things:

Let A denote the statement “The crowbar belongs to Mr Johnson™

Let B denote “The crowbar is painted in blue”

Then we have a witness’ statement: C = “Mr Johnson’s crowbar 1s unpainted”

How do B and C influence our belief in A ?



A =“The crowbar belongs to Mr Johnson”
B = “The crowbar is blue”
C = “Witness says: Mr Johnson’s crowbar is unpainted”

In terms of probabilities (using the subjective interpretation):

Why was Mr Johnson interesting from the beginning?

P(A|I) must have been sufficiently high (where | is the background
Information available — before hearing what the witness (Mrs Johnson) said)

Is B relevant for A, i.e. is P(A|B,I) # P(A|Il) ?

Are A and B conditionally dependent given C,
l.e.isP(A4,B|C,I) # P(A|C,I) - P(B|C,I) ?

There 1s a “problematic” difference between

C = “Witness says: Mr Johnson’s crowbar is unpainted”
and (what may be confused with)

C’= “Mr Johnson’s crowbar is unpainted”



A =“The crowbar belongs to Mr Johnson”
B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar is unpainted”
C’ = “Mr Johnson’s crowbar is unpainted”
For...

P(A,B|C',1) =0 The crowbar cannot belong to Mr Johnson (A)
and be blue (B) iIf Mr Johnson’s crowbar is unpainted (C°)

but...

P(A, B|C, 1) is more difficult. In what way would the relevance between A
and B be affected by a witness statement?

...and relevance with whom?



A =“The crowbar belongs to Mr Johnson”
B = “The crowbar is blue”

C = “Witness says: Mr Johnson’s crowbar iS unpainted”
C’ = “Mr Johnson’s crowbar is unpainted”

Decompose P(A4, B|C,I) using C' and —C":

P(A,B|C,I) = P(4,B|C’,C,I)- P(C'|C,I) + P(A,B|~C’,C,I) - P(=C'|C,T) =

=0-P(C'|C,I) + P(A,B|=C',C,I) - P(=C'|C, 1)

If =C’' holds, i.e. if Mr Johnson’s crowbar is painted, then C' is no longer
relevant (on its own) for A and B and we may write

P(A,B|C,I) = P(A|=C', 1) - P(B|=C', 1) - P(=C'|C, 1)
~ P(B|D) Relates to the probability
that the witness is lying

Hence, since P(4,B|C,I) #= P(A|C,I) - P(B|C,I) A and B are conditionally
dependent given C



