
Meeting 2 (lecture 2):

Probability and likelihood, Bayesian 
inference, subjective probabilities 

Purpose: To continue the repetition and extension of 

probability calculus.



Example:

Assume a method for detecting a certain kind of dye on 

banknotes is such that

• it  gives a positive result (detection) in 99 % of the cases 

when the dye is present, i.e. the proportion of false 

negatives is 1%

• it gives a negative result in 98 % of the cases when the 

dye is absent, i.e. the proportion of false positives is 2%

The presence of dye is rare: prevalence is about 0.1 %

Assume the method has given positive result for a particular 

banknote.

What is the conditional probability that the dye is present? 



Solution:

Let A = “Dye is present” and B = “Method gives positive result”

What about I ?

• We must assume that the particular banknote is as equally likely to be exposed 

to dye detection as any banknote in the population of banknotes. 

• Is that a realistic assumption?

Now, 

Applying Bayes’ theorem gives

𝑃 𝐴 = 0.001; 𝑃 𝐵ȁ𝐴 = 0.99; 𝑃 𝐵 ቚ𝐴 = 0.02

𝑃 𝐴ȁ𝐵 =
𝑃 𝐵ȁ𝐴 ⋅ 𝑃 𝐴

𝑃 𝐵ȁ𝐴 ⋅ 𝑃 𝐴 + 𝑃 𝐵 ቚ𝐴 ⋅ 𝑃 𝐴
=

=
0.99 ⋅ 0.001

0.99 ⋅ 0.001 + 0.02 ⋅ 0.999
=



Odds and Bayes’ theorem on odds form

The odds for an event A “is” a quantity equal to the probability:

Why two quantities for the same thing?

𝑂𝑑𝑑𝑠 𝐴 =
𝑃 𝐴

𝑃 𝐴
=

𝑃 𝐴

1 − 𝑃 𝐴
⇒ 𝑃 𝐴 =

𝑂𝑑𝑑𝑠(𝐴)

𝑂𝑑𝑑𝑠(𝐴) + 1

Example: An “epidemiological” model

Assume we are trying to model the probability p of an event (i.e. the prevalence of 

some disease).

The logit link between p and a set of k explanatory variables x1, x2, … , xk is

logit 𝑝 = ln
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1 ⋅ 𝑥1 + ⋯ + 𝛽𝑘 ⋅ 𝑥𝑘

This link function is common in logistic regression analysis.

Note that we are modelling the natural logarithm of the odds instead of modelling p.

As the odds can take any value between 0 and  the logarithm of the odds can take 

any value between  –  and ➔ Makes the model practical.
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Conditional odds 𝑂𝑑𝑑𝑠 𝐴ȁ𝐵 =
𝑃 𝐴ȁ𝐵

𝑃 𝐴ȁ𝐵

Like probabilities, all odds are conditional if we include background knowledge I

as our basis for the calculations. 
𝑂𝑑𝑑𝑠 𝐴ȁ𝐼 =

𝑃 𝐴ȁ𝐼

𝑃 𝐴ȁ𝐼
;  𝑂𝑑𝑑𝑠 𝐴ȁ𝐵, 𝐼 =

𝑃 𝐴ȁ𝐵, 𝐼

𝑃 𝐴ȁ𝐵, 𝐼

express the updated belief that A holds when we take into account that B holds

The odds ratio:

𝑂𝑅 =
𝑂𝑑𝑑𝑠 𝐴ȁ𝐵, 𝐼

𝑂𝑑𝑑𝑠 𝐴ȁ𝐼
=

𝑃 𝐴ȁ𝐵, 𝐼

𝑃 𝐴ȁ𝐵, 𝐼

𝑃 𝐴ȁ𝐼

𝑃 𝐴ȁ𝐼

expresses how the belief that A holds updates when we take into account that B holds.

Now

𝑂𝑑𝑑𝑠 𝐴ȁ𝐵, 𝐼 =
𝑃 𝐴ȁ𝐵, 𝐼

𝑃 𝐴ȁ𝐵, 𝐼
=

𝑃 𝐵ȁ𝐴, 𝐼 ⋅ 𝑃 𝐴ȁ𝐼
𝑃 𝐵ȁ𝐼

𝑃 𝐵ห𝐴, 𝐼 ⋅ 𝑃 𝐴ȁ𝐼

𝑃 𝐵ȁ𝐼

=

=
𝑃 𝐵ȁ𝐴, 𝐼

𝑃 𝐵ห𝐴, 𝐼
⋅

𝑃 𝐴ȁ𝐼

𝑃 𝐴ȁ𝐼
=

𝑃 𝐵ȁ𝐴, 𝐼

𝑃 𝐵ห𝐴, 𝐼
⋅ 𝑂𝑑𝑑𝑠 𝐴ȁ𝐼

“Bayes’ theorem 

on odds form”



The ratio

is a special case of what is called a likelihood ratio (the concept of “likelihood” 

will follow)

𝑃 𝐵ȁ𝐴, 𝐼

𝑃 𝐵ห𝐴, 𝐼

𝐿𝑅 =
𝑃 𝐵ȁ𝐴, 𝐼

𝑃 𝐵ȁ𝐶, 𝐼

where we have substituted C for Ā and we no longer require A and C to be 

complementary events (not even mutually exclusive ). 

𝑃 𝐴ȁ𝐵, 𝐼

𝑃 𝐶ȁ𝐵, 𝐼
=

𝑃 𝐵ȁ𝐴, 𝐼

𝑃 𝐵ȁ𝐶, 𝐼
⋅

𝑃 𝐴ȁ𝐼

𝑃 𝐶ȁ𝐼
always holds, but the ratios 

involved are not always odds

“The updating of probability ratios when a new event is observed goes 

through the likelihood ratio based on that event.”



Probability and Likelihood – Synonyms?

An event can be likely or probable, which for most people would be the same.

Yet, the definitions of probability and likelihood are different.

In a simplified form:

• The probability of an event measures the degree of belief that this event is true and 

is used for reasoning about not yet observed events

• The likelihood of an event is a measure of how likely that event is in light of 

another observed event

• Both are objected to probability calculus

More formally…

Consider the unobserved event A and the observed event B.

There are probabilities for both representing the degrees of belief for these 

events in general: 𝑃 𝐴ȁ𝐼 , 𝑃 𝐵ȁ𝐼

However, as B is observed we might be interested in

𝑃 𝐴ȁ𝐵, 𝐼

which measures the updated degree of belief that A is true 

once we know that B holds. Still a probability, though.

How interesting is

?

𝑃 𝐵ȁ𝐴, 𝐼



P(B | A, I ) might look meaningless to consider as we have actually observed B.

However, it says something about A.

We have observed B and if A is relevant for B we may compare P(B | A, I ) with         

P (B | Ā, I ) .

Now, even if we have not observed A or Ā, one of them must be true (as a 

consequence of A and B being relevant for each other).

If P(B | A, I )  > P(B | Ā, I ) we may conclude that A is more likely to have occurred 

than is Ā , or better phrased: 

“A is a better explanation for why B has occurred than is Ā”.

P(B | A, I ) is called the likelihood of A given the observed B (and P(B | Ā, I ) is the 

likelihood of Ā ).

Note! This is different from the conditional probability of A given B:  P(A | B, I ) .

¬
A

B

¬𝐴



Potential danger in mixing things up:

When we say that an event is the more likely one in light of data we do not say that 

this event has the highest probability.

Using the likelihood as a measure of how likely is an event is a matter of inference 

to the best explanation.

Logics: Implication:

A → B

• If A is true then B is true, i.e.  P(B | A, I )  1

• If B is false then A is false, i.e.

• If B is true we cannot say anything about whether A is true or not (implication is 

different from equivalence) 

𝑃( 𝐴 ȁ𝐵, 𝐼) ≡ 0



“Probabilistic implication”:

• If A is true then B may be true, i.e. 

• If B is false the A may still be true, i.e.

• If B is true then we may decide which of A and Ā is the best explanation

𝐴
𝑃

𝐵

𝑃( 𝐴ȁ𝐵, 𝐼) > 0

Inference to the best explanation:

• B is observed

• A1, A2, … , Am are potential alternative explanations to B

• If for each j  k  P(B | Ak , I ) > P(B | Aj , I ) then Ak is considered the best 

explanation for B and is provisionally accepted

𝑃( 𝐵ȁ𝐴, 𝐼) > 0



Bayes’ theorem – different forms

The original ”insight” by Thomas Bayes: 𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 ∙ 𝑃 𝐴

𝑃 𝐵

“on ordinal form”, probabilities of 

sets, simple version: 
𝑃 𝐴 𝐵 =

𝑃 𝐵 𝐴 ∙ 𝑃 𝐴

𝑃 𝐵 𝐴 ∙ 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 ∙ 𝑃 ҧ𝐴

“on ordinal form”, probabilities of 

sets, complete version: 
𝑃 𝐴𝑖 𝐵 =

𝑃 𝐵 𝐴𝑖 ∙ 𝑃 𝐴𝑖

σ𝑗 𝑃 𝐵 𝐴𝑗 ∙ 𝑃 𝐴𝑗

“on ordinal form”, for probability 

density functions: 

“on odds form”, probabilities of 

sets: 

𝑃 𝐴 𝐵

𝑃 ҧ𝐴 𝐵
=

𝑃 𝐵 𝐴

𝑃 𝐵 ҧ𝐴
∙

𝑃 𝐴

𝑃 ҧ𝐴

“on odds form”, likelihoods from 

continuous data: 

𝑃 𝐴 𝒙

𝑃 ҧ𝐴 𝒙
=

"𝒚∈𝐴"׬
𝑓 𝒙 𝒚 𝑝 𝒚 𝐴

"𝒚∈¬𝐴"׬
𝑓 𝒙 𝒚 𝑝 𝒚 ҧ𝐴

∙
𝑃 𝐴

𝑃 ҧ𝐴

𝑓′′ 𝑦 𝑥 =
𝑓 𝑥 𝑦 ∙ 𝑓′ 𝑦

׬ 𝑓 𝑥 𝑧 ∙ 𝑓′ 𝑧 𝑑𝑧



The generic form

𝑃 𝜽 Data, 𝝍 ∝ 𝐿 𝜽; Data ∙ 𝑃 𝜽 𝝍

where P is the probability measure applicable to the parameter (or 

variable)  , 𝐿 𝜽; Data is the likelihood of  in light of the observed 

Data, and 𝝍 represents potential hyperparameters.

Proportionality constant:
න

𝝑

𝐿 𝝑; Data 𝑑𝑃 𝝑

When  is continuous-valued and the probability measure is Riemann-Stieltjes

integrable (there is a cumulative distribution function)

where f stands for a probability density function (its form may very well depend 

on the conditions (𝝍 and (𝝍, Data) respectively)

f 𝜽 Data, 𝝍 ∝ 𝐿 𝜽; Data ∙ 𝑓 𝜽 𝝍



Applications to different sampling models

• Binomial sampling:

Sampling a fix number of trials from a Bernoulli process

A Bernoulli process is a series of trials (y1, y2,…)

− where in each trial 
▪ there are two possible outcomes (success and failure)

▪ the probability of success is constant = p 

− where the members of the set of possible sequences y(1), … , y(M) all with 

s successes and f failures (s + f = M) are exchangable

The number of successes, ǁ𝑟 in n trials is binomial distributed 

𝑃 ǁ𝑟 = 𝑟 𝑛, 𝑝 =
𝑛
𝑟

𝑝𝑟 1 − 𝑝 𝑛−𝑟 =
𝑛!

𝑟! 𝑛 − 𝑟 !
∙ 𝑝𝑟 1 − 𝑝 𝑛−𝑟 , 𝑟 = 0,1, … , 𝑛

Bayes’ theorem for making 

inference on p:
𝑃 𝑝 𝑛, 𝑟 ∝

𝑛
𝑟

𝑝𝑟 1 − 𝑝 𝑛−𝑟 ∙ 𝑃 𝑝

Common to assume P(p) to follow a beta distribution



• Hypergeometric sampling:

Sampling a fix number n of items (without replacement) from a finite set of 

N items.

The finite set of items contains Np = R items of a specific type (“success” item)

The number of success items, ǁ𝑟 among the n sampled items is 

hypergeometric distributed 

𝑃 ǁ𝑟 = 𝑟 =

𝑅
𝑟

𝑁 − 𝑅
𝑛 − 𝑟
𝑁
𝑛

 , 𝑟 = 0,1, … , min 𝑛, 𝑅

Bayes’ theorem for making 

inference on p (or on R):
𝑃 𝑝 𝑁, 𝑛, 𝑟 ∝

𝑅
𝑟

𝑁 − 𝑅
𝑛 − 𝑟
𝑁
𝑛

∙ 𝑃 𝑝



• Pascal sampling:

Sampling a random number of trials from a Bernoulli process until a 

predetermined number r of successes has been obtained.

The number of trials needed is a random variable ෤𝑛 with a Pascal or Negative 

binomial distribution

Special case, when r = 1: First success (Fs) distribution

Related to the Geometric distribution

𝑃 ෤𝑛 = 𝑛 𝑟, 𝑝 =
𝑛 − 1
𝑟 − 1

𝑝𝑟 1 − 𝑝 𝑛−𝑟  , 𝑛 = 𝑟, 𝑟 + 1, …

𝑃 ෤𝑛 = 𝑛 𝑝 = 𝑝 1 − 𝑝 𝑛−1 , 𝑛 = 1,2, …

𝑃 ෤𝑥 = 𝑥 𝑝 = 𝑝 1 − 𝑝 𝑥 , 𝑥 = 0,1, …

Bayes’ theorem for making 

inference on p:
𝑃 𝑝 𝑛, 𝑟 ∝

𝑛 − 1
𝑟 − 1

𝑝𝑟 1 − 𝑝 𝑛−𝑟 ∙ 𝑃 𝑝



Application to the Poisson process

A counting process with so-called independent increments

The events to be counted ( ǁ𝑟) appears with an intensity (t)

The number of events appearing in the time interval  (t1, t2) is Poisson 

distributed with mean

i.e

Most common case: (t)   (constant) and t1 = 0. t2 = t (homogeneous 

process):

𝜇 =  න
𝑡=𝑡1

𝑡2

𝜆 𝑡 𝑑𝑡

𝑃 ǁ𝑟 = 𝑟 𝜆 𝑡 , 𝑡1, 𝑡2 =
𝑡=𝑡1׬

𝑡2 𝜆 𝑡 𝑑𝑡
𝑟

∙ 𝑒
− 𝑡=𝑡1׬

𝑡2 𝜆 𝑡 𝑑𝑡

𝑟!
 , 𝑟 = 0,1, …

𝑃 ǁ𝑟 = 𝑟 𝜆 𝑡 , 𝑡1, 𝑡2 =
𝜆 ∙ 𝑡 𝑟 ∙ 𝑒−𝜆∙𝑡

𝑟!
 , 𝑟 = 0,1, …

Bayes’ theorem for making 

inference on : 𝑃 𝜆 𝑟, 𝑡 ∝
𝜆 ∙ 𝑡 𝑟 ∙ 𝑒−𝜆∙𝑡

𝑟!
∙ 𝑃 𝜆



Exercise

Suppose that you feel that accidents along a particular stretch of highway occur 

roughly according to a Poisson process and that the intensity of the process is 

either 2, 3 or 4 accidents per week. 

Your prior probabilities for these three possible intensities are 0.25, 0.45 and 

0.30, respectively. 

If you observe the highway for a period of three weeks and 10 accidents occur, 

what are your posterior probabilities?

Likelihoods:
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Posterior probabilities:
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Predictive distributions

For an unknown parameter of interest,  , we would – according to the subjective 

interpretation of probability

• assign a prior distribution

• upon obtaining data related to  , compute a posterior distribution 

The prior and posterior distributions are used to make inference about the unknown 

 – explanatory inference 

We may also be interested in predictive inference , i.e. predict data related to  but 

not yet obtained
For cross-sectional data the term prediction is mostly used, 

while for time series data we rather use the term forecasting.

Let y1, …, yM ,… be the set (finite or infinite) of observed values that may be 

obtained under conditions ruled by the unknown .

The uncertainty associated with each observation – i.e. that its value/state cannot 

be known in advance – is modelled by letting the observed value be the realisation 

of a random variable ෤𝑦 with a probability distribution depending on  :

𝑃 ෤𝑦 = 𝑦𝑘 𝜃 = 𝑓 𝑦𝑘 𝜃



Prior-predictive distributions

The prior-predictive distribution of ෤𝑦 is the set of marginal probabilities obtained 

when the dependency on  is integrated/summed out by weighting the probability 

mass or density function f (y| ) with the prior distribution of :

𝑃 ෤𝑦 = 𝑦𝑘 =

෍
𝜃

𝑓 𝑦𝑘 𝜃 ∙ 𝑃 ෨𝜃 = 𝜃 𝜃 assumes an enumerable set of values

න
𝜃

𝑓 𝑦𝑘 𝜃 ∙ 𝑓′ 𝜃 𝑑𝜃 𝜃 assumes values on a continuous scale

Posterior-predictive distributions

The posterior-predictive distribution of ෤𝑦 is the set of marginal probabilities obtained 

when the dependency on  is integrated/summed out by weighting the probability 

mass or density function f (y| ) with the posterior distribution of  given an already 

obtained set of observations (Data):

𝑃 ෤𝑦 = 𝑦𝑘 =

෍
𝜃

𝑓 𝑦𝑘 𝜃 ∙ 𝑃 ෨𝜃 = 𝜃 Data 𝜃 assumes an enumerable set of values

න
𝜃

𝑓 𝑦𝑘 𝜃 ∙ 𝑓′′ 𝜃 Data 𝑑𝜃 𝜃 assumes values on a continuous scale



Subjective probabilities and the assignments of them

Example

• Consider the following four events/scenarios

1. Kamala Harris will win the election for president in the US 2024 .

2. The number of bears shot in Sweden so far this year is more than 400.

3. There will be extensive actions to globally vaccinate people against 

monkeypox during 2025.

4. The women’s world record of 10.49 seconds on 100 metres outdoor (sport 

of athletics) from 1988 [Florence Griffith-Joyner] will be beaten before 

next edition of the Olympic Games (2028).

• Try to give your personal degree-of-belief in each of these events rounded off to 

the nearest multiple of 10% and write it down on a piece of paper. 



The literature on decision theory/Bayesian analysis usually gives the 

following method for finding  personal probabilities:

• Let E denote the event of which you are supposed to assign your personal 

probability

• Consider these two lotteries:

1. You win the amount C with probability pE

You win nothing with probability 1 – pE

2. You win the amount C if E happens/is true

You win nothing if E does not happen/is false

• The value of pE that makes you indifferent between these two lotteries is 

your personal probability of E

In practice, you start with pE = 0.5. If lottery 1 is preferred to lottery 2, your P(E) is 

less than 0.5. If lottery 2 is preferred to lottery 1, then your P(E) is greater than 0.5.

Then, continue with pE = 0.25 or pE = 0.75 depending on which lottery was 

preferred with pE = 0.5, etc.

Would using this method help you in assigning your personal probabilities of the 

four events on the previous slide?



Under one and only one set of background information the personal probability of 

an event must be fix.

Assume you would like to assign your personal probability that Italy will beat 

Spain in a football game. Denote this probability p = P(“Italy wins” | I ).

Some would say “Well my probability is somewhere between p1 and p2” where 

p1 < p2 are two numbers between 0 and 1.

What does such an interval signify? 

Is the personal probability a random quantity?

Is p1 the lowest possible value and p2 the highest possible value? 



Compare with the following scenario:

Assume a pot of 100 balls. You will draw one ball from the pot (only 

once!) and in front of that assign your probability that the ball drawn 

will be red.

Assume you know that the pot contains no red balls. This constitutes I

for your assignment, e.g. denoted by I0  Your probability of drawing 

a red ball should then be 0.       [ P(“Red ball” | I0 ) = 0 ] 

At the same time you know that this probability is lower than (or equal to?!) your 

probability that Italy will beat Spain, i.e. p.

Now, assume you know that all balls in the pot are red, i.e. another I, e.g. 

denoted by I100 .  Your probability of drawing a red ball should now be 1. 

[ P(“Red ball” | I100) = 1 ]

At the same time you know that this probability is higher than (or equal to?!) your 

probability that Italy will beat Spain (p).



Now, assume you know that the pot contains x red balls. This 

constitutes another I for your assignment, e.g. denoted by Ix 

Your probability of drawing a red ball should then be x/100  

= P(“Red ball” | Ix ) .

If p = P(”Italy wins” | I ) is a multiple of 0.01, then there is one and only one 

particular value of x for which your personal probability for drawing a red ball 

coincides with p. 

You can always reconstruct the pot analogue by extending the number of balls to 

1000, 10 000 etc. to fit with the resolution of p.



If you still would like to use an interval for representing your 

personal probability?

Does the interval (p1 , p2 ) mean that P(p1 ≤ p ≤ p2 ) = 1 – α  (for α small)  ? 

…and is ”P” still referring to your personal probability measure?

Should there also be intervals for p1 and p2 ?

There is a debate on this in the literature, often referring to the issue of a so-called 

infinite regress  (”probability of the probability of the probability …”)

…but compare with ”… of the distribution of hyperparameters of the distribution of 

hyperparameters of the distribution of parameters.”



When we wish to represent our personal probability as an interval of values, we are 

actually looking for the second-order probability.

When assigning a probability of an event E this is based on the available 

background information I. 

Let us write 𝐼 = 𝐼 𝑛 = 𝑘=1ڂ
𝑛 𝐼𝑘 , where I1, I2, … are (mutually exclusive) pieces 

of background information

Then we would (hopefully) agree on that our assignment of P(E | I(n) ) is a more 

robust (or at least equally robust) assignment of the probability of E than is 

P(E | I(m) ) for any m < n .

One way of expressing robustness may then be

If this ratio equals 1 there should be no need for an 

interval representation of the assigned probability of E.

𝑃 𝐸 𝑘=1ڂ
𝑛 𝐼𝑘

𝑃 𝐸 𝑘=1ڂ
∞ 𝐼𝑘



Can we imagine differences between

3

10

30

100

3000

10000

?



Assigning a probability by updating with meagre data

Suppose you are about to assign your personal probability of an event E. We may 

generically denote this probability pE . 

At the outset your background information is I  pE = P(E | I )

We can also use odds: oE = pE / (1 – pE)

Now, find a and b such that 

a and b then correspond with the parameters of a beta distribution with mean pE .

𝑝𝐸 = 𝑃 𝐸 𝐼 =
𝑎

𝑎 + 𝑏
 or 𝑜𝐸 =

𝑎

𝑏
 



If I is meagre, choose a and b as small as possible.

For instance, if your initial assignment is pE = 0.15 based on meagre I ,

• use the fact that 0.15 = 15/100 = 15/(85+15)

• find the greatest common divisor of 15 and 85     5     0.15 = 3/20

• choose a = 3 and b =17

If I is substantial, find a multiplier for a and b that corresponds with the extension of 

I.

For instance, if your initial assignment is pE = 0.15,

• a = 2  3 = 6,    b = 2  17 = 34      6/40

• a = 10  3 = 30,    b = 10  17 = 170      30/200



Now, assume you extend your background information with some data providing 

a relative frequency for E : fE = nE / n

Since the likelihood 𝐿 𝑝 of p given your data, is proportional to

𝑝𝑛𝐸 ∙ 1 − 𝑝 𝑛−𝑛𝐸

the beta distribution is the conjugate family of prior/posterior distributions

Hence, the posterior distribution from updating with data is beta with parameters 

a’ = a + nE and b’ = b + n – nE

… and the updated assignment of pE (using the posterior mean) becomes

𝑝𝐸 = 𝑃 𝐸ȁ𝐼, 𝑛, 𝐸 =
𝑎′

𝑎′ + 𝑏′
=

𝑎 + 𝑛𝐸

𝑎 + 𝑛𝐸 + 𝑏 + 𝑛 − 𝑛𝐸
=

𝑎 + 𝑛𝐸

𝑎 + 𝑏 + 𝑛

The balance between a meagre or substantial I and meagre or substantial data is 

built-in.
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