
Meeting 18:

Sampling issues (without and with a 

decision-analytic approach), 
Robustness



In front of the oral exam

• Try to form groups of two persons – if not possible then a single person is the 

alternative

• Suggest a few time-points comprising 2 hours for two persons and one hour for 

one person, and send a mail to me with those suggestions

• There is in principal no deadline – the exam can be taken at any time (as long as 

the course exists (i.e. having course code 732A66))!

• An example of excerpts from a dialogue at the oral exam has been uploaded to 

the course web



Sampling issues in classical inference  

Sampling in a general sense can be of two kinds:

I. Sampling without replacement from a finite population

II.    Sampling from an infinite population/from a process/(with replacement from a    

finite population)

Case II also covers making several measurements on a specific object. 



For simple random sampling …

How many units should be sampled?

Depends to the objective of sampling:

• to estimate the value of a parameter?
o the number of units should be chosen from a desired bound on the point 

estimate (desired length of a confidence interval)

o requires prior knowledge of the population variance

𝑛0 ≥
4 ⋅ 𝑧 Τ𝛼 2 ⋅ 𝜎

2

𝐷2

D is the desired length of a confidence 

interval, N is the size of the population

• to be able to reject a (range of) value(s) of a parameter with a high 

probability when the true parameter value is at a certain distance 

from that (range of) value(s)?
o the number of units should be chosen so that the power function of a 

hypothesis test at such a distance is at least as high at that probability

o requires prior knowledge of the population variance

𝑛 =
𝑛0

1 + Τ𝑛0 − 1 𝑁



For stratified sampling and cluster sampling …

How many units should be sampled, and if the population is 

stratified, how should they be allocated over strata?

• to estimate the value of a parameter?
o the number of units should be chosen from a desired bound on the point 

estimate (desired length of a confidence interval)

o requires prior knowledge of the population variance, stratum variances and 

sizes, numbers and sized of clusters



For sampling from several populations (and planning of 

experiments) …

• to be able to detect with a certain probability a difference in a 

parameter between two populations? to be able to reject the 

hypothesis of no differences in effect between the different set-ups 

of an experiment?
o the number of units should be chosen so that the power function of the  

hypothesis test used at such a distance is at least as high at that probability

o requires prior knowledge of the population variances

How many units should be sampled from each population? How 

many measurements should be made for each experimental setup?



The Bayesian approach to sampling

How many units should be sampled to be able to state with a certain 

probability p0 that 

• a parameter is at least/most a certain value or within a specific 

range?

• the difference in a parameter between two populations is at least/ 

at most a certain value or within a specific range?

• …

𝑃 𝜃 ≥ 𝜃0ห𝑛, 𝑦1, . . . , 𝑦𝑛 = න

𝜃≥𝜃0

𝑓′′ 𝜃ȁ𝑛, 𝑦1, . . . , 𝑦𝑛; ψ 𝑑𝜃

𝑓′′ 𝜃ȁ𝑛, 𝑦1, . . . , 𝑦𝑛; ψ =
𝑓 𝑦1, . . . , 𝑦𝑛ȁ𝜃; ψ ⋅ 𝑓′ 𝜃ȁψ

𝑢∈Θ׬ 𝑓 𝑦1, . . . , 𝑦𝑛ȁ𝑢; ψ ⋅ 𝑓′ 𝑢ȁψ 𝑑𝑢

Solve for 𝑛 𝑃 𝜃 ≥ 𝜃0ห𝑛, 𝑦1, . . . , 𝑦𝑛 ≥ 𝑝0



Examples from drugs sampling

Consignments of drugs in forms of pills, capsules, ampoules or plastic bags can be 

very extensive (e.g. thousands of pills in big sacs)

Analysis must by legal reasons be made “unit-wise” and is

time-consuming  as small sample sizes as possible are desired.

However, drug seizures are usually homogeneous with respect to the active 

substance in each unit.

For so-called identifying analysis what is of interest is whether a unit contains the 

active (illicit) substance or not – percentages of that substance or presence of other 

substances is of minor importance.

Hence, the sampling scheme (hypergeometric or approx. binomial) is expected to 

render homogeneous samples, i.e. x = n (all units are illicit ones) or x = 0 (no unit 

is illicit).  



1. Homogeneity expected from visual inspection and experience

Consider historical cases with blue pills

Group the cases into M clusters with respect to another parameter, e.g. the print on 

the pill.

Find an estimate of the prior distribution for the proportion  of Ecstasy pills 

among blue pills.

Nordgaard A. (2006) Quantifying experience in sample size determination for drug analysis of seized 

drugs. Law, Probability and Risk 4: 217-225

The forensic scientist would say “this is a seizure of Ecstasy pills”.

Consider a case with a seizure of 5000 pills, all of the same colour (blue), form 

(circular) and printing (e.g. the Mitsubishi trade mark)



Cluster Accumulated 

size of 

seizure

Accumulated 

size of 

sample

Number of 

Ecstasy pills

Number of 

Non-Ecstasy 

pills

1 N1 n1 x1 n1 – x1

2 N2 n2 x2 n2 – x2

… … … … …

M NM nM xM nM – xM

Use a generic beta prior for the proportion  of Ecstasy pills in the current seizure:

𝑓′ 𝜃ห𝜈1, 𝜈2 =
𝜃𝜈1−1 ⋅ 1 − 𝜃 𝜈2−1

𝐵 𝜈1, 𝜈2
; 0 ≤ 𝜃 ≤ 1



Use the grouped data to estimate the parameters 1 and 2 of this beta prior.

𝑃 ෤𝑥𝑖 = 𝑥𝑖ห𝜃, 𝑛𝑖 ≈

𝑁𝑖 ⋅ 𝜃
𝑥𝑖

⋅
𝑁𝑖 ⋅ 1 − 𝜃
𝑛𝑖 − 𝑥𝑖

𝑁𝑖
𝑛𝑖

Hypergeometric 

distribution

The likelihood function of 1 and 2 in light of observed numbers in all clusters 

(x = (x1, … , xM) ) then becomes

ℒ ν1, ν2ȁx =ෑ

𝑖=1

𝑀

𝑃 ෤𝑥𝑖 = 𝑥𝑖ห𝜈1, 𝜈2, 𝑛𝑖 =ෑ

𝑖=1

𝑀

න

0

1

𝑃 ෤𝑥𝑖 = 𝑥𝑖ห𝜃, 𝑛𝑖 ⋅ 𝑝 𝜃ห𝜈1, 𝜈2 𝑑𝜃

where “    ” stands for rounding downwards to nearest integer 

This can be done by the maximum likelihood method using that the probability of 

obtaining xi Ecstasy pills in cluster i is

𝑓′ 𝜃ห𝜈1, 𝜈2 =
𝜃𝜈1−1 ⋅ 1 − 𝜃 𝜈2−1

𝐵 𝜈1, 𝜈2



The obtained point estimates of 1 and 2 can be assessed with respect to bias

and variance using bootstrap resampling.

In Nordgaard (2006) original point estimates of 1 and 2 for historical cases of 

blue pills at SKL (now NFC) are

Bias adjusted estimates are

and upper 90% confidence limits for the true values of 1 and 2 are

Ƹ𝜈1 = 0.075 and Ƹ𝜈2 = 0.224

Ƹ𝜈1
∗ = 0.038 and Ƹ𝜈2

∗ = 0.133

𝜈1 ≤ 0.062 and 𝜈2 ≤ 0.262

Should confidence limits be 

used in empirical Bayes?



Now, assume the forthcoming sample of n units will consist entirely of Ecstasy 

pills. (Otherwise the case will be considered “non-standard”) 

𝑓′′ 𝜃ห𝑛, 𝜈1, 𝜈2 =
𝜃𝜈1+𝑛−1 ⋅ 1 − 𝜃 𝜈2−1

𝐵 𝜈1 + 𝑛, 𝜈2
; 0 ≤ 𝜃 ≤ 1

The sample size is determined so that the posterior probability of  being higher 

than a certain proportion, say 50 %,  is at least say 99% (referred to as 99% 

credibility)

For large seizures the posterior distribution of  given all n sample units consist of 

Ecstasy is also beta:

Thus we solve for n

where 1 and 2 are replaced by their (adjusted) point estimates (or upper confidence 

limits).

න

0.50

1

𝑓 𝜃ห𝑛, 𝜈1, 𝜈2 𝑑𝜃 ≥ 0.99 ⇔
0.50׬
1

𝜃𝜈1+𝑛−1 ⋅ 1 − 𝜃 𝜈2−1𝑑𝜃

𝐵 𝜈1 + 𝑛, 𝜈2
≥ 0.99



For the above case we find that with the bias-adjusted point estimates

the required sample size is at least 3 and with the upper confidence limits used 

instead (i.e. with 0.062 and 0.262) the required sample size is at least 4

Ƹ𝜈1
∗ = 0.038 and Ƹ𝜈2

∗ = 0.133

For smaller seizures it is more wise to rephrase the requirement in terms of the 

number of Ecstasy units in the non-sampled part of the seizure.

The posterior beta distribution is then replaced with a beta-binomial distribution.

A general sampling rule of n =5  can therefore be used to state with 99% credibility 

that at least 50% of the seizure consists of Ecstasy pills. For a higher proportion, a 

sample size around 12 appears to be satisfactory.

There are in general no large differences between different choices of estimated 

parameters, nor between different colours of Ecstasy pills.



2. Homogeneity stated upon inspection only

Consider now a case with a (large) seizure of drug pills of which the forensic 

scientist cannot directly suspect the contents.

Visual inspection  All pills seem to be identical

Can we substitute the “experience” from the Ecstasy case?

UV-lightning

Pills can be inspected under UV light. 

The fluorescence differs between pills with different chemical composition and 

looking at a number of pills under UV light would thus reveal (to greatest extent) 

heterogeneity.

Uncertainty of this procedure lies mainly with the person who does the inspection

 Experiment required!

does not work for capsules and ampoules



Assume a prior g( ) for the proportion of pills in the seizure that contains a certain 

(but possibly unknown) illicit drug.

For sake of simplicity, assume that pills may be of two kinds (the illicit drug or 

another substance).

Let Y be a random variable associated with the inspection such that





=
 pills"  among  sdifference" gives  inspection  if1

     identical"  are  pills  all" gives  inspection  if0
Y

Relevant case is  Y = 0  (Otherwise the result of the UV-inspection has rejected the 

assumption of homogeneity.)

Now,

is the false positive probability as a function of  (if a positive result means that no 

heterogeneity is detected)

𝑃 𝑌 = 0ȁ𝜃 for 0 < 𝜃 < 1

while                                                            

is the true positive probability. 

𝑃 𝑌 = 0ȁ𝜃 = 0 + 𝑃 𝑌 = 0ȁ𝜃 = 1



The prior g can be updated using this information (when available)

Note that an non-informative prior (i.e. g( )  1 ; 0    1 can be used.

The updated prior (i.e. the posterior upon UV-inspection) can then be used 

analogously to the previous case (Ecstasy).

ℎ 𝜃ȁ𝑌 = 0 =
Pr 𝑌 = 0ȁ𝜃 ⋅ 𝑔 𝜃

0׬
1
Pr 𝑌 = 0ȁ𝜆 ⋅ 𝑔 𝜆 𝑑𝜆



Example Experiment (conducted at SKL (now NFC))

Mix Mix code 

(within 

experiment)

Counts  of  “all 

equal” (Y = 0)

Counts of 

“differences noted” 

(Y = 1)

2% Noskapin / 98% Oxascand 25 mg 2A 0 114

2% Depolan / 98% Trimetoprim 4A 1 116

5% Enalapril / 95% Lehydan 1A 0 116

5% Pargitan / 95% Oxascand 15 mg 3A 0 115

20% Oxascand 25 mg / 80% Noskapin 2B 0 118

20%Trimetoprin / 80% Depolan 4B 0 114

50% Enalapril / 50% Lehydan 1B 0 116

50% Pargitan / 50% Oxascand 15 mg 3B 0 117

100% Egazil 5 114 3

• 8 types of pills with different substances were used to form 9 different mixtures 

(i.e. of two proportions)  of 2 types of pills

• Each mixture was prepared by randomly shuffling 100 pills with the current 

proportions on a tray that was put under UV-light

• 10 case-workers made inspections in random order such that a total of 114-117 

inspections were made for each mixture 

Data:



Data can be illustrated by plotting estimated probabilities for Y = 0 vs. 
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To avoid the vertices at  = 0.02, 0.20, 0.80 and 0.98, the linearly interpolated 

values are smoothed using a Kernel function:

where K(x) is a symmetric function integrating to one over its support.

𝜋 𝜃 = න
0

1

𝐾 𝜃 − 𝜆 ⋅ 𝜑 𝜆 𝑑𝜆
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Now, the prior can be updated using this smoothed function as an estimate of                         

, i.e.

(With a non-informative prior g, this simplifies into                                                  )

Pr 𝑌 = 0ȁ𝜃

ℎ 𝜃ȁ𝑌 = 0 =
𝜋 𝜃 ⋅ 𝑔 𝜃

0׬
1
𝜋 𝜆 ⋅ 𝑔 𝜆 𝑑𝜆

ℎ 𝜃ȁ𝑌 = 0 =
𝜋 𝜃

0׬
1
𝜋 𝜆 𝑑𝜆
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hComparison of the non-informative prior 
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Now, let x be the number of illicit drug pills found in a sample of n pills. 

Analogously with the Ecstasy case n should be determined so that if x = n a 99% 

credible lower limit for  is 50% (or even higher).

With the updated prior derived the following table of posterior probabilities is 

obtained.

n ( )0,|5.0Pr == Ynx  

3 0.99996032237 

4 0.99999475894 

5 0.99999924614 

6 0.99999988597 

7 0.99999998211 

8 0.99999999711 

9 0.99999999952 

10 0.99999999992 

 

Thus, a sample size of n =3 units is 

satisfactory.

Slightly higher values may be 

recommended due to the limits of 

the experiment



The decision-theoretic approach

As was previously taken up, the decision about sampling (and how much to 

sample) builds on the expected value of sample information, EVSI(n), and the 

optimal sample size is the value of n for which the expected net gain of sampling

ENGS(n) = EVSI(n) – CS(n)

is maximised.

EVSI = නVSI 𝑦 ∙ 𝑓 𝑦 𝑑𝑦 =
One

variant
= ⋯ = 𝐸′′𝐿 𝑎′ − 𝐸′′𝐿 𝑎′′

VSI 𝑦 = 𝐸′′𝑅 𝑎′′ȁ𝑦 − 𝐸′′𝑅 𝑎′ȁ𝑦 = 𝐸′′𝐿 𝑎′ȁ𝑦 − 𝐸′′𝐿 𝑎′′ȁ𝑦

Particularly, from Meeting 11:



Example: Return to the examples with illicit pills 

Assume we should make a decision on whether the proportion,  , of Ecstasy 

pills in a seizure of 1000 pills is less than or at least 50 %. 

The possible actions are a1 = “ < 50 %” and  a2 = “  50 %”

Assume a “0–ki” loss function as

 < 50 %   50 %

a1 0 1

a2 20 0



Assume a prior distribution of  as Beta(1, 2) with 1 = 0.038 and 2 = 0.133 (the 

point estimates from the empirical Bayes procedure) 

The number of Ecstasy pills in a sample of n pills is Bin(n,  ).

Pre-assuming the sample to be completely homogeneous, i.e. either all are Ecstasy 

pills or all are non-Ecstasy pills gives the posterior distribution to be any of  

Beta(1 + n, 2 ) [all are Ecstasy] and Beta(1, 2 + n) [all are non-Ecstasy]

⇒ 𝑃 𝜃 < 0.50ȁ𝜈1 = 0.038, 𝜈2 = 0.133 = න

0

0.5
𝜃0.038−1 ⋅ 1 − 𝜃 0.133−1

𝐵 0.038,0.133
𝑑𝜃

≈ 0.780
⇒
𝐸𝐿 𝑎1 = 0 ⋅ 0.780 + 1 ⋅ 0.220 = 0.22
𝐸𝐿 𝑎2 = 20 ⋅ 0.780 + 0 ⋅ 0.220 = 15.6

⇒ 𝑎′𝑜𝑝𝑡 = 𝑎1



With Beta(1 + n, 2 ) as posterior the expected posterior losses are

𝐸𝐿 𝑖 𝑎1ȁ𝑛 = 0 ⋅ Pr 𝜃 < 0.5ȁ𝑛, 𝑛 + 1 ⋅ Pr 𝜃 ≥ 0.5ȁ𝑛, 𝑛

= න

0.5

1
𝜃0.038+𝑛−1 1 − 𝜃 0.133−1

𝐵 0.038 + 𝑛, 0.133
𝑑𝜃

𝐸𝐿 𝑖 𝑎1ȁ𝑛 = 20 ⋅ Pr 𝜃 < 0.5ȁ𝑛, 𝑛 + 0 ⋅ Pr 𝜃 ≥ 0.5ȁ𝑛, 𝑛

= 20න

0

0.5
𝜃0.038+𝑛−1 1 − 𝜃 0.133−1

𝐵 0.038 + 𝑛, 0.133
𝑑𝜃

How would we obtain the optimal sample size?

With Beta(1, 2 + n) as posterior the expected posterior losses are

𝐸𝐿 𝑖𝑖 𝑎1ȁ𝑛 = 0 ⋅ Pr 𝜃 < 0.5ȁ0, 𝑛 + 1 ⋅ Pr 𝜃 ≥ 0.5ȁ0, 𝑛

= න

0.5

1
𝜃0.038−1 1 − 𝜃 0.133+𝑛−1

𝐵 0.038,0.133 + 𝑛
𝑑𝜃

𝐸𝐿 𝑖𝑖 𝑎2ȁ𝑛 = 20 ⋅ Pr 𝜃 < 0.5ȁ0, 𝑛 + 0 ⋅ Pr 𝜃 ≥ 0.5ȁ0, 𝑛

= 20න

0

0.5
𝜃0.038−1 1 − 𝜃 0.133+𝑛−1

𝐵 0.038,0.133 + 𝑛
𝑑𝜃



Graph the posterior expected losses against n

Not an issue when all 

sampled pills are non-

Ecstasy



With a sample size of 2 all should be clear. However with no costs involved 

minimising ENGS is not the question here.



Some future perspectives on decision making and data acquisition

The Bayesian view of decision making is that the rational decision is the decision 

(action) that maximises the expected utility (or minimises the expected loss) with 

respect to the available (subjective) probability distributions over the possible states 

of the world.

However, this applies to a situation where the decision maker is forced to make a 

decision

An “easy” case may be if one of the possible actions is “leave things as they are for 

now”, which signals a possibility to postpone the decision. 

But what if EU (“leave things as they are for now”|I ) < 𝐸𝑈 𝑎 𝐼 for some

action a ? 

In mathematical terms the optimal action conditional on the available information is

arg max
𝑎

න𝑈 𝑎, 𝜃 𝑔 𝜃 𝐼 𝑑𝜃
where 𝑔 𝜃 𝐼 is the probability distribution 

over the possible states of the world ( ) 

given the available information I.



Decision in court is an important example, medical decisions may be another.

In court the possible actions are two: convict or acquit

However, the evidence that has been forwarded by the prosecutor and the pleas 

made by the prosecutor and the defense may lead to that (a member of) the jury 

[or the court]  finds

𝐸𝐿 acquit 𝐼 > 𝐸𝐿 convict 𝐼

but despite this chooses to acquit the defendant.

The point is that “acquit” may stand for two actions: 

acquit when  𝐸𝐿 acquit 𝐼 < 𝐸𝐿 convict 𝐼

acquit when                                                       but I is deemed non-sufficient𝐸𝐿 acquit 𝐼 > 𝐸𝐿 convict 𝐼



Recall the presentation at Meeting 2:

We wrote 𝐼 = 𝐼 𝑚 = 𝑘=1ڂ
𝑚 𝐼𝑘 , where I1, I2, … are (mutually exclusive) pieces of 

background information

Hence, deeming I to be non-sufficient means deeming m0 to be too small.

The question is: For which m > m0 would 𝐼 𝑚 be sufficient 

Say that in a case where the decision is acquit of the second kind m = m0

⇒ 𝐼 = 𝐼 𝑚0

acquit when  𝐸𝐿 acquit 𝐼 < 𝐸𝐿 convict 𝐼

acquit when                                                     but I is deemed non-sufficient𝐸𝐿 acquit 𝐼 > 𝐸𝐿 convict 𝐼

This can also be projected to subordinal decision problems: Have the prosecutor 

proven that the defendant’s shoe made the shoe mark recovered from the crime 

scene?



Assume there is a case where a door has been forced with some kind of breaking 

tool. On the door there are green stains of paint in the toolmarks. A green-painted 

crowbar has been seized from a suspect.  

Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  

The hypotheses are

The forensic scientist that analysed the stains and the crowbar gives the following 

report:

“The observed characteristics [E ] of the stains [features of the paint] are between 

200 and 300 times more probable if the stains originate from the seized crowbar 

compared to if they originate from another breaking tool” 

This means that the likelihood ratio  of Hm versus Ha is somewhere between 200 

and 300 – only one value but not precisely which one.

200 ≤
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼
≤ 300 or 200 ≤

𝑓 𝐸 𝑯𝒎, 𝐼

𝑓 𝐸 𝑯𝒂, 𝐼
≤ 300 depending on the scale 

of the measurements



200 ≤
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼
≤ 300

Now, if we put ourselves into the factfinder’s (jury, judge) situation…

The report provide quite a large likelihood ratio (Bayes’ factor). 

With even prior odds, i.e.                           and if we assume it can be nothing else 

than a breaking tool used to force the door, then 𝑃 𝑯𝒎 𝐸, 𝐼 + 𝑃 𝑯𝒂 𝐸, 𝐼 = 1
and the posterior probability of 𝑯𝒎 will be

Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  

𝑃 𝑯𝒎 𝐼

𝑃 𝑯𝒂 𝐼
= 1

𝑃 𝑯𝒎 𝐸, 𝐼 ≥
200

200 + 1
≈ 0.995

which among many judicial decision makers would be considered very high.



200 ≤
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼
≤ 300Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  

accept Hm if 𝑃 𝑯𝒎 𝐸, 𝐼 ≥ 0.995

The alternative view is to go via the loss function

Action States of the world

Hm is true Ha is true

Accept Hm 0 L(II)

Accept Ha L(I) 0

200 ≤ 𝐵 ≤ 300

where the decision would be “Accept Hm” if 𝐵 >
𝑃 𝑯𝒂 𝐼

𝑃 𝑯𝒎 𝐼
⋅
𝐿 II

𝐿 I

𝑃 𝑯𝒎 𝐼

𝑃 𝑯𝒂 𝐼
= 1With                             this decision rule reduces to 𝐵 >

𝐿 II

𝐿 I

Hence, as long as                                                       the decision will be “Accept Hm” 𝐿 II < 𝐵 × 𝐿 I ≥ 200 × 𝐿 I

When L(II) is almost equal to                      an equivalent decision rule is to 200 × 𝐿 I



200 ≤
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼
≤ 300Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  

So, e.g. the loss function

Action States of the world

Hm is true Ha is true

Accept Hm 0 1

Accept Ha < 200 0

with a Bayes factor of 200 and prior odds equal to 1 (“1 to 1 on”) would lead to the 

decision “Accept Hm”.

…provided the decision maker can trust on that the Bayes factor is robust.

One argument supporting such a view can be that the forensic scientists reports a range in 

which the Bayes factor lies (and 200 would then be interpreted as the absolute lower limit).



200 ≤
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼
≤ 300Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  

But reporting an interval instead of a single value may give the impression that the 

Bayes factor has random variation (which is not true!). 

If the forensic scientist is convinced that the Bayes factor is at least 200, then giving 

the benefit of the doubt to the defendant the fact finder should use 200 and the 

interesting question is – how robust is that value? 

𝐵 =
𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼

The numerator of B is naturally of less interest here since (most often) deviations 

from the value 1 is due to sources that can be controlled for, e.g.

• laboratory issues

• quality of the evidentiary material

• choices of items if there is more than one (“The green stains originate from a 

crowbar belonging to the suspect” and the suspect has 3 crowbars)



Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  
𝐵 =

𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼

The denominator of B is the crucial component. The assignment of it depends on the 

available information and knowledge about the variation of the features of the paint 

analysed among breaking tools.

One possibility of obtaining B = 200 is that the forensic scientist has previously 

investigated in total 200 breaking tools of which one had paint with these features. 

The relative frequency of the features becomes 1/200 which (with                             ) 

gives a Bayes factor of exactly 200.

𝑃 𝐸 𝑯𝒎, 𝐼 = 1

Would that value of B be robust?

What would happen with the Bayes factor if another breaking tool with these paint 

features is found?



Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  
𝐵 =

𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼

Would that value of B be robust?

Another possibility is that the forensic scientist has made a market research on 

crowbars and found out that on the average 137 out of 20 000 sold crowbars had 

green paint. 

Moreover, the forensic scientist had bought 5 randomly chosen green crowbars 

and found out that 3 of these had paint with the same features as the seized 

crowbar.

With these data the numerator of B can be assigned as 

𝑃 𝐸 𝑯𝒂, 𝐼 = 𝑃 "green and with observed features" 𝑯𝒂, 𝐼

= 𝑃 "observed features" "green", 𝑯𝒂, 𝐼 × 𝑃 "green" 𝑯𝒂, 𝐼 =
3

5
×

137

20000
≈

≈ 0.00411

which (with                             ) gives a Bayes factor of approx. 243 rounded down to 

200.  

𝑃 𝐸 𝑯𝒎, 𝐼 = 1

Is it sufficient to do the market 

research on crowbars only?



Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  
𝐵 =

𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼

Going back to the situation where the forensic scientist has investigated 200 

breaking tools of which one had paint with the features of interest.

Assume that the true proportion of breaking tools with green paint and the features 

of interest (E ) is 1/200 = 0.5 %. 

Simulate, say 20 000 instances of observing the paint features of (independent) 

crowbars with that proportion (0.5%) of E.

Plot the successively obtained relative frequencies.



Hm: The green stains of paint (S) originate from the seized crowbar (G)

Ha: The green stains of paint (S) originate from another breaking tool  
𝐵 =

𝑃 𝐸 𝑯𝒎, 𝐼

𝑃 𝐸 𝑯𝒂, 𝐼

How big must n be so that

can be considered as 

sufficiently robust for the fact finder 

to make the decision “Accept Hm”?

𝑃 𝐸 𝑯𝒂, 𝐼 𝑛

That value of n would be the size of 

the sample in a complementary study 

of breaking tools needed.

Note 1: Have we by this suddenly become frequentists?

Note 2: Wouldn’t it be better to find the expression for, say a 99 % credible interval 

for the proportion of interest and what value of n would make this interval as 

narrow as requested?


