
Meeting 14:
The decisive approach to statistical 

inference. Part II



In an inferential setup we may work with propositions or hypotheses.

A hypothesis is a central component in all building of science.

The “standard situation” would be that we have two hypotheses at a time:

H0 The forwarded hypothesis

H1 The alternative hypothesis

These must be mutually exclusive.

Successive falsification of hypotheses (cf. Popper1) until only one is left is one 

strategy for science building.

From a perspective of statistical inference “falsification” is never a decision with 

100% certainty, and there are different ways of handling this uncertainty.

1Popper K., Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, 

London, 1963



Classical statistical hypothesis testing

(Neyman J. and Pearson E.S. , 1933)

The two hypotheses are different explanations to the Data.

 Each hypothesis provides model(s) for Data

The purpose is to use Data to try to falsify H0.

Type-I-error: Falsifying a true H0

Type-II-error: Not falsifying a false H0

Size or Significance level:  = P(Type-I-error)

If each hypothesis provides one and only one model for Data:

Power: 1 – P(Type-II-error)  = 1 – 

Both hypotheses are then referred to as simple hypotheses

Decision is in one 

direction only.



Most powerful test for simple hypotheses (Neyman-Pearson lemma):

Reject (falsify) 𝐻0 when
ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎

ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎
≥ 𝐴

… and where A > 0  is chosen so that

This minimises  for fixed .

Note that the probability is taken with respect to Data , i.e. with respect to 

the probability model for Data given H0. 

𝑃 ቤ
ℒ 𝐻1ȁData

ℒ 𝐻0ȁData
≥ 𝐴 𝐻0 = 𝛼

Extension to composite hypotheses: Uniformly most powerful test (UMP)

where L(H0|Data) and L(H1|Data) are  the likelihoods of H0 and H1 respectively 

(notation with calligraphic L to not confuse with loss function).



Example: A seizure of pills, suspected to be Ecstasy, is sampled for 

the purpose of investigating whether the proportion of Ecstasy pills is 

“around” 80% or “around” 50%.

In a sample of 50 pills, 39 proved to be Ecstasy pills.

As the forwarded hypothesis we can formulate 

H0: Around 80% of the pills in the seizure are Ecstasy

and as the alternative hypothesis

H1: Around 50% of the pills in the seizure are Ecstasy



The likelihood of the two hypotheses are

L (H0 | Data) = Probability of obtaining 39 Ecstasy pills out of 50 sampled when the 

seizure proportion of Ecstasy pills is 80%.

L (H1 | Data) = Probability of obtaining 39 Ecstasy pills out of 50 sampled when

the seizure proportion of Ecstasy pills is 50%.

Assuming a large seizure these probabilities can be calculated using a binomial 

sampling model Bin(50, p ), where H0 states that p = p0 = 0.8 and H1 states that

p = p1 = 0.5.

In generic form, if we have obtained x Ecstasy pills out of n sampled:

ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎 = ℒ 𝐻0ȁ𝑥, (𝑛) =
𝑛
𝑥

⋅ 𝑝0
𝑥 ⋅ 1 − 𝑝0

𝑛−𝑥

ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎 = ℒ 𝐻1ȁ𝑥, (𝑛) =
𝑛
𝑥

⋅ 𝑝1
𝑥 ⋅ 1 − 𝑝1

𝑛−𝑥



The Neyman-Pearson lemma now states that the most powerful test is of the form

ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎

ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎
≥ 𝐴 ⇒

𝑝1
𝑥 ⋅ 1 − 𝑝1

𝑛−𝑥

𝑝0
𝑥 ⋅ 1 − 𝑝0

𝑛−𝑥
=

𝑝1
𝑝0

𝑥

⋅
1 − 𝑝1
1 − 𝑝0

𝑛−𝑥

≥ 𝐴

Hence, H0 should be rejected in favour of H1 as soon as x  C

How to choose C?

⇔

𝑥 ⋅ ln
𝑝1
𝑝0

+ 𝑛 − 𝑥 ⋅ ln
1 − 𝑝1
1 − 𝑝0

≥ ln𝐴

⇔

𝑥 ≤
ln𝐴 − 𝑛 ⋅ ln

1 − 𝑝1
1 − 𝑝0

ln
𝑝1
𝑝0

− ln
1 − 𝑝1
1 − 𝑝0

= 𝐶(𝑛) since 𝑝1 < 𝑝0 ⇒ ln
𝑝1
𝑝0

− ln
1 − 𝑝1
1 − 𝑝0

< 0



Normally, we would set the significance level  and the find C so that

If  is chosen to 0.05 we can search the binomial distribution valid under H0 for a 

value C such that

𝑃 𝑋 ≤ 𝐶ห𝐻0 = 𝛼



𝑘=0

𝐶

𝑃 𝑋 = 𝑘ห𝐻0 ≤ 0.05 ⇒ 

𝑘=0

𝐶

50
𝑘

⋅ 0. 8𝑘 ⋅ 0. 250−𝑘 ≤ 0.05

MSExcel:

BINOM.INV(50;0.8;0.05) returns the lowest value of B for which the sum is 

at least 0.05  35

BINOM.DIST(35;50;0.8;TRUE)  0.06072208

BINOM.DIST(34;50;0.8;TRUE)  0.030803423

 Choose C = 34.   Since x = 39 we cannot reject H0



Drawbacks with the classical approach

• Data alone “decides”. Small amounts of data  Low power

• Difficulties in interpretation:

When H0 is rejected, it means 

“If we repeat the collection of data under (in principal) identical circumstances 

then in (at most) 100 % of all cases when H0 is true                                      
ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎

ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎
≥ 𝐴 ”

Can we (always) repeat the collection of data?

• “Falling off the cliff” – What is the difference between “just rejecting” and 

“almost rejecting” ?

• “Isolated” falsification (or no falsification) – Tests using other data but with the 

same hypotheses cannot be easily combined



The Bayesian Approach

There is always a process that leads to the formulation of the hypotheses.

A prior probability exists for each of them:

𝑝0 = 𝑃 𝐻0ȁ𝐼 = 𝑃 𝐻0

𝑝1 = 𝑃 𝐻1ȁ𝐼 = 𝑃 𝐻1
𝑝0 + 𝑝1 = 1

Non-informative priors:  p0 = p1 = 0.5 gives prior odds = 1

Simpler expressed as prior odds for the hypothesis H0:

𝑂𝑑𝑑𝑠 𝐻0ȁ𝐼 =
𝑝0
𝑝1

=
𝑃 𝐻0ȁ𝐼

𝑃 𝐻1ȁ𝐼



Data should help us calculating posterior odds

𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼 =
𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

𝑃 𝐻1ȁ𝐷𝑎𝑡𝑎, 𝐼
=
𝑞0
𝑞1

⇒

𝑞0 = 𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼 =
𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼 + 1

The “hypothesis testing” is replaced by a judgement upon whether q0 is 

• small enough to make us believe in H1 (falsifying H0)

• large enough to make us believe in H0 (falsifying H1)

Confirming/Undermining support of H0.

i.e. no pre-setting of the decision direction is made.



The odds ratio (posterior odds/prior odds) is know as the Bayes factor:

𝐵 =
𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

𝑂𝑑𝑑𝑠 𝐻0ȁ𝐼
=

Τ𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼 𝑃 𝐻1ȁ𝐷𝑎𝑡𝑎, 𝐼

Τ𝑃 𝐻0ȁ𝐼 𝑃 𝐻1ȁ𝐼

How can we obtain the posterior odds?



𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼 = 𝐵 ⋅ 𝑂𝑑𝑑𝑠 𝐻0ȁ𝐼

Hence, if we know the Bayes factor, we can calculate the posterior odds (since we 

can always set the prior odds).



1. Both hypotheses are simple, i.e. they each give one and only one model for Data

a) Distinct probabilities can be assigned to Data

Bayes’ theorem on odds-form then gives

Hence, the Bayes factor is 

The probabilities of the numerator and denominator respectively can be  

calculated (estimated) using the model provided by respective 

hypothesis.

𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

𝑃 𝐻1ȁ𝐷𝑎𝑡𝑎, 𝐼
=
𝑃 𝐷𝑎𝑡𝑎ȁ𝐻0, 𝐼

𝑃 𝐷𝑎𝑡𝑎ȁ𝐻1, 𝐼
⋅
𝑃 𝐻0ȁ𝐼

𝑃 𝐻1ȁ𝐼

𝐵 =
𝑃 𝐷𝑎𝑡𝑎ȁ𝐻0, 𝐼

𝑃 𝐷𝑎𝑡𝑎ȁ𝐻1, 𝐼

There are different situations depending on the complexities of the 

hypotheses and the probability measure applicable to Data.



b) Data is the observed value x of a continuous (possibly  

multidimensional) random variable 

It can be shown that

where f (x | H0, I ) and f (x | H1, I ) are the probability density functions 

given by the models specified by H0 and H1 respectively.

Hence, the Bayes factor is 

Known (or estimated) density functions under each model can then be 

used to calculate the Bayes factor.

𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

𝑃 𝐻1ȁ𝐷𝑎𝑡𝑎, 𝐼
=
𝑓 𝒙ȁ𝐻0, 𝐼

𝑓 𝒙ȁ𝐻1, 𝐼
⋅
𝑃 𝐻0ȁ𝐼

𝑃 𝐻1ȁ𝐼

𝐵 =
𝑓 𝒙ȁ𝐻0, 𝐼

𝑓 𝒙ȁ𝐻1, 𝐼



In both cases we can see that the Bayes factor is a likelihood ratio since the 

numerator and denominator are likelihoods for respective hypothesis.



𝐵 =
ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎, 𝐼

ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎, 𝐼

Example Ecstasy pills revisited

The likelihoods for the hypotheses are

ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎 =
50
39

⋅ 0. 839 ⋅ 0. 211 ≈ 0.1271082

ℒ 𝐻1ȁ𝐷𝑎𝑡𝑎 =
50
39

⋅ 0. 539 ⋅ 0. 511 ≈ 3.317678𝑒 − 05

Hence, Data are 3831 times more probable if H0 is true compared to if H1 is true.

H0: Around 80% of the pills 

in the seizure are Ecstasy

H1: Around 50% of the pills 

in the seizure are Ecstasy

⇒ 𝐵 ≈
0.1271082

3.317678𝑒 − 05
≈ 3831



Assume we have no particular belief in any of the two hypothesis prior to 

obtaining the data.

⇒ 𝑂𝑑𝑑𝑠 𝐻0 = 1

⇒ 𝑂𝑑𝑑𝑠 𝐻0ȁ𝐷𝑎𝑡𝑎 ≈ 3831 ⋅ 1

⇒ 𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎 =
3831

3831 + 1
≈ 0.9997

Hence, upon the analysis of data we can be 99.97% certain that H0 is true.

Note however that it may be unrealistic to assume only two possible 

proportions of Ecstasy pills in the seizure!



2. The hypothesis H0 is simple but the hypothesis H1 is composite, i.e. it  provides 

several models for Data (several explanations)

The various models of H1 would (in general) provide different  likelihoods for 

the different explanations. 

 We cannot come up with one unique likelihood for H1.

If in addition, the different explanations have different prior probabilities we 

have to weigh the different likelihoods with these.

If the composition in H1 is in form of a set of discrete alternatives, the Bayes 

factor can be written

where P(H1i | H1) is the conditional prior probability that H1i is true given that 

H1 is true  (relative prior) , and  the sum is over all alternatives  H11 , H12 , …

𝐵 =
ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎

σ𝑖 ℒ 𝐻1𝑖ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑃 𝐻1𝑖ห𝐻1



If the relative priors are (fairly) equal the denominator reduces to the average 

likelihood of the alternatives.

𝐵 =
ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎

"𝜃∈𝐻1"
ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑝 𝜃ห𝐻1 𝑑𝜃

If the likelihoods of the alternatives are equal the denominator reduces to that 

likelihood since the relative priors sum to one.

If the composition is defined by a continuously valued parameter,  we must 

use the conditional prior density of  given that H1 is true: p( |H1) and

integrate the likelihood with respect to that density.

 The Bayes factor can be written

𝐵 =
ℒ 𝐻0ȁ𝐷𝑎𝑡𝑎

σ𝑖 ℒ 𝐻1𝑖ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑃 𝐻1𝑖ห𝐻1



3. Both hypothesis are composite, i.e. each  provides several models for Data 

(several explanations)

This gives different sub-cases, depending on whether the compositions in the 

hypotheses are discrete or according to a continuously valued parameter.

The “discrete-discrete” case gives the Bayes factor

and the “continuous-continuous” case gives the Bayes factor

where p( | H0 ) is the conditional prior density of  given that H0 is true. 

𝐵 =
σ𝑗 ℒ 𝐻0𝑗

ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑃 𝐻0𝑗ห𝐻0

σ𝑖 ℒ 𝐻1𝑖ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑃 𝐻1𝑖ห𝐻1

𝐵 =
"𝜃∈𝐻0"

ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑝 𝜃ห𝐻0 𝑑𝜃

"𝜃∈𝐻1"
ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑝 𝜃ห𝐻1 𝑑𝜃



Example Ecstasy pills revisited again

Assume a more realistic case where we from a sample of the seizure shall investigate 

whether the proportion of Ecstasy pills is higher than 80%.



H0: Proportion  > 0.8

H1: Proportion   0.8

We further assume that all  within the region of each hypothesis are equally likely, 

hence having uniform distributions. The conditional prior densities for  under each 

hypothesis can thus be defined as

𝑝 𝜃ห𝐻0 = ቐ
1

1 − 0.8
= 5 0.8 < 𝜃 ≤ 1

0 otherwise

𝑝 𝜃ห𝐻1 = ቐ
1

0.8 − 0
= 1.25 0 ≤ 𝜃 ≤ 0.8

0 otherwise

i.e. both are composite



The likelihood function is (irrespective of the hypotheses)

ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 =
50
39

⋅ 𝜃39 ⋅ 1 − 𝜃 11

Then, the Bayes factor is

𝐵 =
𝜃 ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑝 𝜃ห𝐻0 𝑑𝜃

𝜃 ℒ 𝜃ȁ𝐷𝑎𝑡𝑎 ⋅ 𝑝 𝜃ห𝐻1 𝑑𝜃
=

0.8
1 50

39
⋅ 𝜃39 ⋅ 1 − 𝜃 11 ⋅ 5𝑑𝜃

0
0.8 50

39
⋅ 𝜃39 ⋅ 1 − 𝜃 11 ⋅ 1.25𝑑𝜃

=

= 4 ⋅
0.8
1
𝜃39 ⋅ 1 − 𝜃 11 ⋅ 1𝑑𝜃

0
0.8

𝜃39 ⋅ 1 − 𝜃 11 ⋅ 1𝑑𝜃

How do we solve these integrals?



The Beta distribution:

(We should know that) a random variable is said to have a Beta distribution with 

parameters a and b if its probability density function is

𝑓 𝑥 = 𝐶 ⋅ 𝑥𝑎−1 ⋅ 1 − 𝑥 𝑏−1 ; 0 ≤ 𝑥 ≤ 1

with 𝐶 = න

0

1

𝑥𝑎−1 ⋅ 1 − 𝑥 𝑏−1𝑑𝑥 = B(𝑎, 𝑏)

Hence, we can identify the integrals of the Bayes factor as proportional to different 

probabilities of the same beta distribution

0.8
1
𝜃39 ⋅ 1 − 𝜃 11𝑑𝜃

0
0.8

𝜃39 ⋅ 1 − 𝜃 11𝑑𝜃
=
0.8
1
𝐶 ⋅ 𝜃39 ⋅ 1 − 𝜃 11𝑑𝜃

0
0.8

𝐶 ⋅ 𝜃39 ⋅ 1 − 𝜃 11𝑑𝜃

=
0.8
1
𝐶 ⋅ 𝜃40−1 ⋅ 1 − 𝜃 12−1𝑑𝜃

0
0.8

𝐶 ⋅ 𝜃40−1 ⋅ 1 − 𝜃 12−1𝑑𝜃

namely a beta distribution with parameters a = 40 and b =12.



Hence, the Bayes factor is 1.83732.

With even prior odds (Odds(H0) = 1) we get the posterior odds equal to the Bayes 

factor and the posterior probability of H0 is

𝑃 𝐻0ȁ𝐷𝑎𝑡𝑎 =
1.83732

1.83732 + 1
≈ 0.65

 Data does not provide us with evidence clearly against any of the hypotheses.

> num <- 1-pbeta(q=0.8,shape1=40,shape2=12)

> den <- 1 - num

> num

[1] 0.314754

> den

[1] 0.685246

> ratio <- num/den

> B <- 4*ratio

> B

[1] 1.83732



Finite action problems revisited 

So far the confirming/undermining of a hypothesis has been made by the 

calculation of the posterior odds:

Concluding which of H0 and H1 should be the hypothesis to be retained has thus 

been a question about whether the posterior probability of one of the hypothesis is 

“high enough”.

Coupling the posterior probabilities with losses (or utilities) will  define a decision 

problem.

𝑃 𝐻0 𝒙

𝑃 𝐻1 𝒙
= 𝐵 ∙

𝑃 𝐻0

𝑃 𝐻1



The loss function is

c0 : Cost of accepting H0 when H1 is true

c1 : Cost of accepting H1 when H0 is true

The Bayes action is the action that minimises the expected posterior loss:

( ) ( ) ( )xxx 10100 PrPrPr0 HcHcH =+

( ) ( ) ( )xxx 01101 PrPr0Pr HcHHc =+



The posterior probabilities were obtained before (Meeting 1):

Hence,

Minimising the expected posterior loss gives the action “Use the banknote”.

How high must the fine be for the action to be changed?

P(“Dye is present”|”Positive detection) = 0.047

P(“Dye is not present”|”Positive detection”) = 0.953

Action Expected posterior loss

Destroy banknote 00.047 + 1000.953 = 95.3

Use banknote 5000.047 + 0953 = 23.5

Example: Return again to the example with dye on banknotes

The proposed loss function was (Meeting 15):

Action State of the world

Dye is present (H0) Dye is not present (H1)

Destroy banknote 0 100

Use banknote 500 0



General decision-theoretic approach

A loss function of “0 – k“ type is used (there may be two different values of k):

Expected posterior losses (assuming availability of data x):

Action is "Accept 𝐻0": 0 ⋅ Pr 𝐻0ȁx + 𝐿 II ⋅ Pr 𝐻1ȁx = 𝐿 II ⋅ Pr 𝐻1ȁx

Action is "Accept 𝐻1": 𝐿 I ⋅ Pr 𝐻0ȁx + 0 ⋅ Pr 𝐻1ȁx = 𝐿 I ⋅ Pr 𝐻0ȁx

Action States of the world

H0 is true H1 is true

Accept H0 0
L(Type-II-error)=

L(II)

Accept H1

L(Type-I-error)=

L(I)
0



Hence the optimal action would be “Accept H0” when 

𝐿 II ⋅ 𝑃 𝐻1ȁx < 𝐿 I ⋅ 𝑃 𝐻0ȁx ⇔
𝑃 𝐻0ȁx

𝑃 𝐻1ȁx
>
𝐿 II

𝐿 I
⇔

𝐵 ⋅
𝑃 𝐻0

𝑃 𝐻1
>
𝐿 II

𝐿 I
⇔ 𝐵 >

𝑃 𝐻1
𝑃 𝐻0

⋅
𝐿 II

𝐿 I

… and the optimal action would be “Accept H1” when 

𝐿 II ⋅ 𝑃 𝐻1ȁx > 𝐿 I ⋅ 𝑃 𝐻0ȁx ⇔
𝑃 𝐻0ȁx

𝑃 𝐻1ȁx
<
𝐿 II

𝐿 I
⇔

𝐵 ⋅
𝑃 𝐻0

𝑃 𝐻1
<
𝐿 II

𝐿 I
⇔ 𝐵 <

𝑃 𝐻1
𝑃 𝐻0

⋅
𝐿 II

𝐿 I



Return to example with banknotes:

P(“Dye is present”|”Positive detection) = P(H0 | x) = 0.047

P(“Dye is not present”|”Positive detection”) = P(H0 | x) = 0.953

L(I) = 500

L(II) = 100

⇒
𝑃 𝐻0ȁx

𝑃 𝐻1ȁx
=
0.047

0.953
≈ 0.049 ;

𝐿 II

𝐿 I
=
100

500
= 0.2

Since 0.049 < 0.2 we should accept H1, i.e. believe that dye is not present, and 

hence use the banknote. 

For accepting H0 (and destroy the banknote), then fine ( L(I) ) must satisfy 

0.047

0.953
>
100

𝐿 I
⇒ 𝐿 I >

100 ⋅ 0.953

0.047
≈ 2028


