Meeting 14: The decisive approach to statistical inference. Part II

In an inferential setup we may work with *propositions* or *hypotheses*.

A hypothesis is a central component in all building of science.

The "standard situation" would be that we have two hypotheses at a time:

- H_0 The forwarded hypothesis
- H_1 The alternative hypothesis

These must be <u>mutually exclusive</u>.

Successive falsification of hypotheses (cf. Popper¹) until only one is left is one strategy for science building.

From a perspective of statistical inference "falsification" is never a decision with 100% certainty, and there are different ways of handling this uncertainty.

Classical statistical hypothesis testing

(Neyman J. and Pearson E.S., 1933)

The two hypotheses are different explanations to the *Data*. \Rightarrow Each hypothesis provides *model(s)* for *Data*

The purpose is to use *Data* to <u>try to falsify $H_{0.}$ </u>

Type-I-error:Falsifying a true H_0 Type-II-error:Not falsifying a false H_0

Size or Significance level: $\alpha = P(\text{Type-I-error})$

If each hypothesis provides <u>one and only one model</u> for *Data*:

Power: $1 - P(\text{Type-II-error}) = 1 - \beta$

Both hypotheses are then referred to as *simple hypotheses*

Decision is in one direction only.

Most powerful test for *simple* hypotheses (Neyman-Pearson lemma):

Reject (falsify)
$$H_0$$
 when $\frac{\mathcal{L}(H_1|Data)}{\mathcal{L}(H_0|Data)} \ge A$

where $\mathcal{L}(H_0|Data)$ and $\mathcal{L}(H_1|Data)$ are the likelihoods of H_0 and H_1 respectively (notation with calligraphic \mathcal{L} to not confuse with loss function).

... and where A > 0 is chosen so that

$$P\left(\frac{\mathcal{L}(H_1|\text{Data})}{\mathcal{L}(H_0|\text{Data})} \ge A \middle| H_0\right) = \alpha$$

This minimises β for fixed α .

Note that the probability is taken with respect to **Data**, i.e. with respect to the probability model for *Data* given H_0 .

Extension to *composite* hypotheses: Uniformly most powerful test (UMP)

Example: A seizure of pills, suspected to be Ecstasy, is sampled for the purpose of investigating whether the proportion of Ecstasy pills is "around" 80% or "around" 50%.

In a sample of 50 pills, 39 proved to be Ecstasy pills.

As the forwarded hypothesis we can formulate

 H_0 : Around 80% of the pills in the seizure are Ecstasy

and as the alternative hypothesis

 H_1 : Around 50% of the pills in the seizure are Ecstasy

The likelihood of the two hypotheses are

 $\mathcal{L}(H_0 | Data) =$ Probability of obtaining 39 Ecstasy pills out of 50 sampled when the seizure proportion of Ecstasy pills is 80%.

 $\mathcal{L}(H_1 | Data) =$ Probability of obtaining 39 Ecstasy pills out of 50 sampled when the seizure proportion of Ecstasy pills is 50%.

Assuming a large seizure these probabilities can be calculated using a binomial sampling model Bin(50, p), where H_0 states that $p = p_0 = 0.8$ and H_1 states that $p = p_1 = 0.5$.

In generic form, if we have obtained *x* Ecstasy pills out of *n* sampled:

$$\mathcal{L}(H_0|Data) = \mathcal{L}(H_0|x,(n)) = \binom{n}{x} \cdot p_0^x \cdot (1-p_0)^{n-x}$$
$$\mathcal{L}(H_1|Data) = \mathcal{L}(H_1|x,(n)) = \binom{n}{x} \cdot p_1^x \cdot (1-p_1)^{n-x}$$

The Neyman-Pearson lemma now states that the most powerful test is of the form

$$\frac{\mathcal{L}(H_1|Data)}{\mathcal{L}(H_0|Data)} \ge A \Rightarrow \frac{p_1^x \cdot (1-p_1)^{n-x}}{p_0^x \cdot (1-p_0)^{n-x}} = \left(\frac{p_1}{p_0}\right)^x \cdot \left(\frac{1-p_1}{1-p_0}\right)^{n-x} \ge A$$

$$\Rightarrow x \cdot \ln\left(\frac{p_1}{p_0}\right) + (n-x) \cdot \ln\left(\frac{1-p_1}{1-p_0}\right) \ge \ln A \Rightarrow x \le \frac{\ln A - n \cdot \ln\left(\frac{1-p_1}{1-p_0}\right)}{\ln\left(\frac{p_1}{p_0}\right) - \ln\left(\frac{1-p_1}{1-p_0}\right)} \\ = C(n) \quad \left(\text{since } p_1 < p_0 \Rightarrow \ln\left(\frac{p_1}{p_0}\right) - \ln\left(\frac{1-p_1}{1-p_0}\right) < 0 \right)$$

Hence, H_0 should be rejected in favour of H_1 as soon as $x \le C$

How to choose *C*?

Normally, we would set the significance level α and the find *C* so that

$$P(X \le C | H_0) = \alpha$$

If α is chosen to 0.05 we can search the binomial distribution valid under H_0 for a value *C* such that

$$\sum_{k=0}^{C} P(X = k | H_0) \le 0.05 \Rightarrow \sum_{k=0}^{C} {\binom{50}{k}} \cdot 0.8^k \cdot 0.2^{50-k} \le 0.05$$

MSExcel:

BINOM. INV (50; 0.8; 0.05) returns the lowest value of *B* for which the sum is at least $0.05 \Rightarrow 35$

BINOM.DIST(35;50;0.8;TRUE) $\Rightarrow 0.06072208$ BINOM.DIST(34;50;0.8;TRUE) $\Rightarrow 0.030803423$

 \Rightarrow Choose C = 34. \Rightarrow Since x = 39 we cannot reject H_0

Drawbacks with the classical approach

- *Data* alone "decides". Small amounts of data \Rightarrow Low power
- Difficulties in interpretation:

When H_0 is rejected, it means

"If we repeat the collection of data under (in principal) identical circumstances

then in (at most) 100α % of all cases when H_0 is true $\frac{\mathcal{L}(H_1|Data)}{\mathcal{L}(H_0|Data)} \ge A$ "

Can we (always) repeat the collection of data?

- "Falling off the cliff" What is the difference between "just rejecting" and "almost rejecting"?
- "Isolated" falsification (or no falsification) Tests using other data but with the same hypotheses cannot be easily combined

The Bayesian Approach

There is always a process that leads to the formulation of the hypotheses. \Rightarrow A *prior probability* exists for each of them:

> $p_0 = P(H_0|I) = P(H_0)$ $p_1 = P(H_1|I) = P(H_1)$ $p_0 + p_1 = 1$

Simpler expressed as *prior odds* for the hypothesis H_0 :

$$Odds(H_0|I) = \frac{p_0}{p_1} = \frac{P(H_0|I)}{P(H_1|I)}$$

Non-informative priors: $p_0 = p_1 = 0.5$ gives prior odds = 1

Data should help us calculating posterior odds

$$Odds(H_0|Data, I) = \frac{P(H_0|Data, I)}{P(H_1|Data, I)} = \frac{q_0}{q_1}$$
$$\Rightarrow$$

$$q_0 = P(H_0|Data, I) = \frac{Odds(H_0|Data, I)}{Odds(H_0|Data, I) + 1}$$

The "hypothesis testing" is replaced by a judgement upon whether q_0 is

- small enough to make us believe in H_1 (*falsifying* H_0)
- large enough to make us believe in H_0 (*falsifying* H_1)

Confirming/Undermining support of H_0 .

i.e. no pre-setting of the decision direction is made.

How can we obtain the posterior odds?

The odds ratio (posterior odds/prior odds) is know as the *Bayes factor*:

$$B = \frac{Odds(H_0|Data,I)}{Odds(H_0|I)} = \frac{P(H_0|Data,I)/P(H_1|Data,I)}{P(H_0|I)/P(H_1|I)}$$
$$\Rightarrow$$
$$Odds(H_0|Data,I) = B \cdot Odds(H_0|I)$$

Hence, if we know the Bayes factor, we can calculate the posterior odds (since we can always set the prior odds).

There are different situations depending on the complexities of the hypotheses and the probability measure applicable to *Data*.

- 1. Both hypotheses are simple, i.e. they each give one and only one model for *Data*
 - a) Distinct probabilities can be assigned to *Data*

Bayes' theorem on odds-form then gives

$$\frac{P(H_0|Data,I)}{P(H_1|Data,I)} = \frac{P(Data|H_0,I)}{P(Data|H_1,I)} \cdot \frac{P(H_0|I)}{P(H_1|I)}$$

Hence, the Bayes factor is

$$B = \frac{P(Data|H_0, I)}{P(Data|H_1, I)}$$

The probabilities of the numerator and denominator respectively can be calculated (estimated) using the model provided by respective hypothesis.

b) *Data* is the observed value *x* of a continuous (possibly multidimensional) random variable

It can be shown that

$$\frac{P(H_0|Data,I)}{P(H_1|Data,I)} = \frac{f(\boldsymbol{x}|H_0,I)}{f(\boldsymbol{x}|H_1,I)} \cdot \frac{P(H_0|I)}{P(H_1|I)}$$

where $f(\mathbf{x} | H_0, I)$ and $f(\mathbf{x} | H_1, I)$ are the probability density functions given by the models specified by H_0 and H_1 respectively.

Hence, the Bayes factor is

$$B = \frac{f(\boldsymbol{x}|H_0, I)}{f(\boldsymbol{x}|H_1, I)}$$

Known (or estimated) density functions under each model can then be used to calculate the Bayes factor.

In both cases we can see that the Bayes factor is a *likelihood ratio* since the numerator and denominator are likelihoods for respective hypothesis.

$$\Rightarrow B = \frac{\mathcal{L}(H_0 | Data, I)}{\mathcal{L}(H_1 | Data, I)}$$

Example Ecstasy pills revisited

The likelihoods for the hypotheses are

 H_0 : Around 80% of the pills in the seizure are Ecstasy H_1 : Around 50% of the pills in the seizure are Ecstasy

$$\mathcal{L}(H_0|Data) = {\binom{50}{39}} \cdot 0.8^{39} \cdot 0.2^{11} \approx 0.1271082$$
$$\mathcal{L}(H_1|Data) = {\binom{50}{39}} \cdot 0.5^{39} \cdot 0.5^{11} \approx 3.317678e - 05$$
$$\Rightarrow B \approx \frac{0.1271082}{3.317678e - 05} \approx 3831$$

Hence, *Data* are 3831 times more probable if H_0 is true compared to if H_1 is true

Assume we have no particular belief in any of the two hypothesis *prior* to obtaining the data.

$$\Rightarrow Odds(H_0) = 1$$

$$\Rightarrow Odds(H_0|Data) \approx 3831 \cdot 1$$

$$\Rightarrow P(H_0|Data) = \frac{3831}{3831 + 1} \approx 0.9997$$

Hence, upon the analysis of data we can be 99.97% certain that H_0 is true.

Note however that it may be unrealistic to assume only two possible proportions of Ecstasy pills in the seizure!

2. The hypothesis H_0 is simple but the hypothesis H_1 is *composite*, i.e. it provides several models for *Data* (several explanations)

The various models of H_1 would (in general) provide different likelihoods for the different explanations. \Rightarrow We cannot come up with one unique likelihood for H_1 .

If in addition, the different explanations have <u>different prior probabilities</u> we have to <u>weigh</u> the different likelihoods with these.

If the composition in H_1 is in form of a set of <u>discrete</u> alternatives, the Bayes factor can be written

$$B = \frac{\mathcal{L}(H_0|Data)}{\sum_i \mathcal{L}(H_{1i}|Data) \cdot P(H_{1i}|H_1)}$$

where $P(H_{1i} | H_1)$ is the conditional prior probability that H_{1i} is true given that H_1 is true (*relative prior*), and the sum is over all alternatives H_{11} , H_{12} , ...

$$B = \frac{\mathcal{L}(H_0|Data)}{\sum_i \mathcal{L}(H_{1i}|Data) \cdot P(H_{1i}|H_1)}$$

If the relative priors are (fairly) equal the denominator reduces to the *average* likelihood of the alternatives.

If the likelihoods of the alternatives are equal the denominator reduces to that likelihood since the relative priors sum to one.

If the composition is defined by a <u>continuously</u> valued parameter, θ we must use the <u>conditional prior density</u> of θ given that H_1 is true: $p(\theta/H_1)$ and integrate the likelihood with respect to that density.

 \Rightarrow The Bayes factor can be written

$$B = \frac{\mathcal{L}(H_0|Data)}{\int_{\theta \in H_1^{''}} \mathcal{L}(\theta|Data) \cdot p(\theta|H_1) d\theta}$$

3. Both hypothesis *are composite*, i.e. each provides several models for *Data* (several explanations)

This gives different sub-cases, depending on whether the compositions in the hypotheses are discrete or according to a continuously valued parameter.

The "discrete-discrete" case gives the Bayes factor

$$B = \frac{\sum_{j} \mathcal{L} \left(H_{0_{j}} | Data \right) \cdot P \left(H_{0_{j}} | H_{0} \right)}{\sum_{i} \mathcal{L} \left(H_{1i} | Data \right) \cdot P \left(H_{1i} | H_{1} \right)}$$

and the "continuous-continuous" case gives the Bayes factor

$$B = \frac{\int_{\theta \in H_0^{"}} \mathcal{L}(\theta | Data) \cdot p(\theta | H_0) d\theta}{\int_{\theta \in H_1^{"}} \mathcal{L}(\theta | Data) \cdot p(\theta | H_1) d\theta}$$

where $p(\theta | H_0)$ is the conditional prior density of θ given that H_0 is true.

Example Ecstasy pills revisited again

Assume a more realistic case where we from a sample of the seizure shall investigate whether the proportion of Ecstasy pills is <u>higher than</u> 80%.

*H*₀: Proportion $\theta > 0.8$ *H*₁: Proportion $\theta \le 0.8$

 \Rightarrow

i.e. both are composite

We further assume that all θ within the region of each hypothesis are equally likely, hence having uniform distributions. The <u>conditional prior densities</u> for θ under each hypothesis can thus be defined as

$$p(\theta | H_0) = \begin{cases} \frac{1}{1 - 0.8} = 5 & 0.8 < \theta \le 1\\ 0 & \text{otherwise} \end{cases}$$
$$p(\theta | H_1) = \begin{cases} \frac{1}{0.8 - 0} = 1.25 & 0 \le \theta \le 0.8\\ 0 & \text{otherwise} \end{cases}$$

The likelihood *function* is (irrespective of the hypotheses)

$$\mathcal{L}(\theta | Data) = {\binom{50}{39}} \cdot \theta^{39} \cdot (1 - \theta)^{11}$$

Then, the Bayes factor is

$$B = \frac{\int_{\theta} \mathcal{L}(\theta | Data) \cdot p(\theta | H_0) d\theta}{\int_{\theta} \mathcal{L}(\theta | Data) \cdot p(\theta | H_1) d\theta} = \frac{\int_{0.8}^{1} {\binom{50}{39}} \cdot \theta^{39} \cdot (1 - \theta)^{11} \cdot 5d\theta}{\int_{0}^{0.8} {\binom{50}{39}} \cdot \theta^{39} \cdot (1 - \theta)^{11} \cdot 1.25d\theta} = 4 \cdot \frac{\int_{0.8}^{1} \theta^{39} \cdot (1 - \theta)^{11} \cdot 1d\theta}{\int_{0}^{0.8} \theta^{39} \cdot (1 - \theta)^{11} \cdot 1d\theta}$$

How do we solve these integrals?

The Beta distribution:

(We should know that) a random variable is said to have a Beta distribution with parameters a and b if its probability density function is

$$f(x) = C \cdot x^{a-1} \cdot (1-x)^{b-1} ; \ 0 \le x \le 1$$

with $C = \int_{0}^{1} x^{a-1} \cdot (1-x)^{b-1} dx = B(a,b)$

Hence, we can identify the integrals of the Bayes factor as proportional to different probabilities of <u>the same</u> beta distribution

$$\frac{\int_{0.8}^{1} \theta^{39} \cdot (1-\theta)^{11} d\theta}{\int_{0}^{0.8} \theta^{39} \cdot (1-\theta)^{11} d\theta} = \frac{\int_{0.8}^{1} C \cdot \theta^{39} \cdot (1-\theta)^{11} d\theta}{\int_{0}^{0.8} C \cdot \theta^{39} \cdot (1-\theta)^{11} d\theta}$$
$$= \frac{\int_{0.8}^{1} C \cdot \theta^{40-1} \cdot (1-\theta)^{12-1} d\theta}{\int_{0}^{0.8} C \cdot \theta^{40-1} \cdot (1-\theta)^{12-1} d\theta}$$

namely a beta distribution with parameters a = 40 and b = 12.


```
> num <- 1-pbeta(q=0.8, shape1=40, shape2=12)
> den <- 1 - num
> num
[1] 0.314754
> den
[1] 0.685246
> ratio <- num/den
> B <- 4*ratio
> B
[1] 1.83732
```

Hence, the Bayes factor is 1.83732.

With even prior odds ($Odds(H_0) = 1$) we get the posterior odds equal to the Bayes factor and the posterior probability of H_0 is

$$P(H_0|Data) = \frac{1.83732}{1.83732 + 1} \approx 0.65$$

 \Rightarrow *Data* does not provide us with evidence clearly against any of the hypotheses.

Finite action problems revisited

So far the confirming/undermining of a hypothesis has been made by the calculation of the *posterior odds*:

$$\frac{P(H_0|\boldsymbol{x})}{P(H_1|\boldsymbol{x})} = B \cdot \frac{P(H_0)}{P(H_1)}$$

Concluding which of H_0 and H_1 should be the hypothesis to be retained has thus been a question about whether the posterior probability of one of the hypothesis is "high enough".

Coupling the posterior probabilities with losses (or utilities) will define a decision problem.

The loss function is

Action	State of nature	
	H_0 true	H_1 true
Accept H_0	0	C ₀
Accept H_1	<i>c</i> ₁	0

 c_0 : Cost of accepting H_0 when H_1 is true

 c_1 : Cost of accepting H_1 when H_0 is true

The Bayes action is the action that minimises the expected posterior loss:

Action	Expected posterior loss	
Accept H_0	$0 \cdot \Pr(H_0 \mathbf{x}) + c_0 \cdot \Pr(H_1 \mathbf{x}) = c_0 \cdot \Pr(H_1 \mathbf{x})$	
Accept H_1	$c_1 \cdot \Pr(H_0 \mathbf{x}) + 0 \cdot \Pr(H_1 \mathbf{x}) = c_1 \cdot \Pr(H_0 \mathbf{x})$	

Example: Return again to the example with dye on banknotes

The posterior probabilities were obtained before (Meeting 1):

P("Dye is present"|"Positive detection) = 0.047

P("Dye is not present"|"Positive detection") = 0.953

The proposed loss function was (Meeting 15):

Action	State of the world	
	Dye is present (H_0)	Dye is not present (H_1)
Destroy banknote	0	100
Use banknote	500	0

Hence,

Action	Expected posterior loss	
Destroy banknote	0.0.047 + 100.0.953 = 95.3	
Use banknote	500.0.047 + 0.953 = 23.5	

Minimising the expected posterior loss gives the action "Use the banknote". How high must the fine be for the action to be changed?

General decision-theoretic approach

A loss function of "0 - k" type is used (there may be two different values of k):

Action	States of the world	
	H_0 is true	H_1 is true
Accept H_0	0	L(Type-II-error)= L(II)
Accept H_1	L(Type-I-error)= L(I)	0

Expected posterior losses (assuming availability of data x):

Action is "Accept H_0 ": $0 \cdot \Pr(H_0|\mathbf{x}) + L(\mathbf{II}) \cdot \Pr(H_1|\mathbf{x}) = L(\mathbf{II}) \cdot \Pr(H_1|\mathbf{x})$ Action is "Accept H_1 ": $L(\mathbf{I}) \cdot \Pr(H_0|\mathbf{x}) + 0 \cdot \Pr(H_1|\mathbf{x}) = L(\mathbf{I}) \cdot \Pr(H_0|\mathbf{x})$

Hence the optimal action would be "Accept H_0 " when

$$L(II) \cdot P(H_1|\mathbf{x}) < L(I) \cdot P(H_0|\mathbf{x}) \Leftrightarrow \frac{P(H_0|\mathbf{x})}{P(H_1|\mathbf{x})} > \frac{L(II)}{L(I)}$$

$$\Leftrightarrow$$
$$B \cdot \frac{P(H_0)}{P(H_1)} > \frac{L(II)}{L(I)} \Leftrightarrow B > \frac{P(H_1)}{P(H_0)} \cdot \frac{L(II)}{L(I)}$$

... and the optimal action would be "Accept H_1 " when

$$L(\mathrm{II}) \cdot P(H_1|\mathbf{x}) > L(\mathbf{I}) \cdot P(H_0|\mathbf{x}) \Leftrightarrow \frac{P(H_0|\mathbf{x})}{P(H_1|\mathbf{x})} < \frac{L(\mathrm{II})}{L(\mathbf{I})}$$

$$\Leftrightarrow$$
$$B \cdot \frac{P(H_0)}{P(H_1)} < \frac{L(\mathrm{II})}{L(\mathbf{I})} \Leftrightarrow B < \frac{P(H_1)}{P(H_0)} \cdot \frac{L(\mathrm{II})}{L(\mathbf{I})}$$

Return to example with banknotes:

 $P(\text{"Dye is present"}|\text{"Positive detection}) = P(H_0 | \mathbf{x}) = 0.047$ $P(\text{"Dye is not present"}|\text{"Positive detection"}) = P(H_0 | \mathbf{x}) = 0.953$ L(I) = 500

L(II) = 100

$$\stackrel{\Rightarrow}{=} \frac{P(H_0|\mathbf{x})}{P(H_1|\mathbf{x})} = \frac{0.047}{0.953} \approx 0.049 \quad ; \quad \frac{L(\mathrm{II})}{L(\mathrm{I})} = \frac{100}{500} = 0.2$$

Since 0.049 < 0.2 we should accept H_1 , i.e. believe that dye is not present, and hence use the banknote.

For accepting H_0 (and destroy the banknote), then fine (L(I)) must satisfy

$$\frac{0.047}{0.953} > \frac{100}{L(I)} \quad \Rightarrow \ L(I) > \frac{100 \cdot 0.953}{0.047} \approx 2028$$