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Exercise 7.14

14. Suppose that a contractor must decide whether or not to build any speculative houses (houses
for which he would have to find a buyer), and if so, how many. The houses that this contractor
builds are sold for a price of $30,000, and they cost him $26,000 to build. Since the contractor
cannot afford to have too much cash tied up at once, any houses that remain unsold three
months after they are completed will have to be sold to a realtor for $25,000. The contractor’s
prior distribution for 6 , the number of houses that will be sold within three months of comple-

tion, is:
@ P = 0)
0 0.05
1 0.10
2 0.10
3 0.20
4 0.25
5 0.20
6 0.10

If the contractor’s utility function is linear with respect to money, how many houses should he
build? How much should he be willing to pay to find out for certain how many houses will be

sold within three months?



The state of the world is how many houses, 8 , that will be sold within tree months
of completion. Possible values are 0, 1, 2, 3, 4, 5, 6.

The action to be taken is how many houses to be built,
l.e. a, = “Build k houses” , k = 0,1,2,3,4,5,6 (the number cannot be higher than the
maximum value of 6.

For each house built the payoff is 4 thousand dollars if it is sold and —1 thousand
dollars if it has to be sold to a realtor.

The payoff function can then be written

4.k ifk <86
R(akre)_{4.3_1.(k—0)=5-6—k ith >0



The payoff table then becomes

ap~9| 0 1 2 3 4 5 6
0 0 0 0 0 0 0
1 -1 4 4 4 4 4 4
2 -2 3 8 8 8 8 8
3 -3 2 7 12 12 12 12
4 -4 1 6 11 16 16 16
3) -5 0 3) 10 15 20 20
6 —6 -1 4 9 14 19 24

The (prior) probability distribution of 8 is
6 0 1 2 3 4 5 6

P(6) =6 0.05 | 0.10 | 0.10 | 0.20 | 0.25 | 0.20 | 0.10




The (prior) expected payoffs for each action are

3% ER(ak)

0

(-1)-0.05 + 4.0.10 + 4-0.10 + 4-0.20 + 4-0.25 + 4.0.20 + 4-0.10 = 3.75

(-2)-0.05 + 3-0.10 + 8-0.10 + 8-0.20 + 8-0.25 + 8-:0.20 + 8-:0.10 = 7

(-3)-0.05+ 2:0.10 + 7-0.10 + 12-0.20 + 12-0.25 + 12-0.20 + 12-0.10 = 9.75

(—4)-0.05 +1-0.10 + 6:0.10 + 11.0.20 + 16-0.25 + 16-0.20 + 16:0.10 = 11.5

(-5)-0.05 + 0-0.10 + 5-0.10 + 10-0.20 + 15-0.25 + 20-0.20 + 20-0.10 = 12

OO lWIN|IFL]|O

(-6)-0.05 + (-1)-0.10 + 4-0.10 + 9-0.20 + 14-0.25 + 19-0.20 + 24.0.10 = 11.5

= The optimal action according to the ER-criterion is to build 5 houses.



Losses fora;  ( L(ay, 0) = max;(R(a;,0)) — R(ay,6) )

6 1 2 3 4 5 6

max; (R (a, 0)) 4 8 12 16 20 24
R(as, 6) -5 0 5 10 15 20 20
L(as,0) 5 4 3 2 1 0 4

= The expected loss for action ag is

5.0.05+4.0.10+ 3-:0.10+2:0.20+ 3:0.25+0-0.20+4.0.10=2

Since EVPI = EL(a,) the contractor should be willing to pay 2 thousand dollars to
find out for certain how many houses will be sold.



With Hugin:
Influence diagram:
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Note that no evidence node with observed data is present. The inference is from the
prior distribution of 4.
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| Mumber of houses to build? | Payoffs | Mumber of houses sold? |

0.1
0.1
0.2
0.25
0.2
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FHumber of houses to build?

Humber of houses sold?

A drawback here is that the
utility table cannot be viewed as
a two-way table.

Payoffs

| Mumber of houses to build? | Payoffs | Mumber of houses sold?l

MNumber of houses sald? 0
Mumber of houses to build? ] 1 2 3 4 5 f 0 1 2 3 4 5 [5] 0 1 2 3

i] |o |o |o o 0 i] |o 0 0 0 0 i] i] 0 0 0 0 -
4 | m | é




| Mumber of houses to build? | Payoffs | Mumber of houses sold?l

Mumber of houses to build? ] 1 2 3 4 5 f 0 1 2 3 4 5 [5] 0 1

“ MNumber of houses sald? 0

14|

Utilities (here payoffs) from the payoff table’shall be entered column wise.

a9 ()// ,//Z/,

[k~ |[O|W
(H~|OC|PH>
[k~ |[O|O
[k~ |[O[O

12 12 12 12

|
N
\
O, [([NN[W|H|O| P
S

10 15 20 20

SOk~ |W[IN|F—L]|O
|
w
~AlOOO|(N|[O0C|B>]|O




Edit Functions View

Mumber of houses to build? | Payoffs | Mumber of houses sold?

Mumber of houses sold?

[y

Mumber of houses to build? 0 i 2

v 0 -1 -2 -3

LI

FHumber of houses to build?

Run the network (flash icon).

MHumber of houses sald?
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We could also as utilities enter the losses with negative sign.
L(ay,0) = maxi(R(ai,Q)) — R(a, 9)

ay, 6 0 1 2 3 4 5 6
0 0-0= 4-0= |8-0=|12-0=| 16-0=| 20-0= | 24-0=
0 4 8 12 16 20 24
1 0-(-1)=| 4-4= |8-4=|12-4=|16-4= | 20-4= | 24-4=
1 0 4 8 12 16 20
2 0-(2)=| 4-3= |8-8=|12-8=|16-8=|20-8= | 24-8=
2 1 0 4 8 12 16
3 0-(3)=| 4-2= |8-7=(12-12=[16-12=|20-12=|24-12=
3 2 1 0 4 8 12
4 0—(4)=| 4-1= |8-6=[12-11=|16-16=|20-16=|24—-16=
4 3 2 1 0 4 8
5 0—(5)=| 4-0= [8-5=[12-10=|16-15=|20-20=|24-20=
5 4 3 2 1 0 4
6 0—(6)=|4-(-1)=|8-4=|12-9= |16-14=|20-19=|24-24=
6 5 4 3 2 1 0
maxy (R (ay, 6)) 0 4 8 12 16 20 24




Edit Functions View

| Number of houses to build? | Losses | Number of houses sold?

Mumber of houses sold? ]
Mumber of houses to build? 0 i 2 3 4 5 [ 1]
Ltility 0 -1 -2 -3 -4 -5 -6 -4 -1 -2 -3 -5

LU

Mumber of houses to build?

...and run.

Humber of houses sold?
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] -14.00
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I B R Building 5 houses will give the least expected loss

R el (2 thousand dollars)

-2.50
+- 4 [ Losses

...and we can at the same time answer the second
question (EVPI =2 000 $)

&



The Hugin software (like several other software) is limited when it comes to
continuous probability distributions.

Commercial Hugin licences can handle normally distributed nodes but not other
continuous probability distributions.

This “drawback” is due to that the internal probability calculations within the Hugin
engine are exact, and therefore conjugate families with analytically deduced
normalisation constants are the only feasible ones.

Many problems may however get acceptable solutions by discretising the probability
density functions.

A lot of Bayesian inference can be achieved by using MCMC, but the demonstration
of the solution becomes much less transparent.

Some research have been made for implementing algorithms based on numerical
Integration (and not MCMC) to obtain approximations to exact probability calculus

in Bayesian networks: “Simonsson I. (2018). Exact inference in Bayesian networks
and applications in forensic statistics. Doktorsavhandlingar vid Chalmers tekniska
hogskola — No. 4499. Chalmers University of Technology, Sweden.” é



Exercise 7.15

15. A hot-dog vendor at a football game must decide in advance how many hot dogs to order. He
makes a profit of $0.10 on each hot dog that is sold, and he suffers a $0.20 loss on hot dogs that
are unsold. If his distribution of the number of hot dogs that will be demanded at the football
game is a normal distribution with mean 10,000 and standard deviation 2000, how many hot
dogs should he order? How much is it worth to the vendor to know in advance exactly how
many hot dogs will be demanded?

Let @ = Demand in no. of hot dogs
a, = Order k hot dogs (action)

The payoff function is (cf. Exercise 7.14):

R(a. 8) = 0.10 - k ifk<@
%7 71010-6 —-020-(k—6)=03-6—-02-k ifk>6

The prior distribution of 8 is N(u = 10000, = 2000)

1 (9_“')2

= The pdfof 8 is f5(0) = =" e 202 and the cdf of 8 is

1 O  (x-w?
Fz(0) = J e 202 dx
ovV2T Jy=c



The expected payoff with action a, is

oo

E(R(ay, 0)) = f R(ay,0) - f5(0)d6 =

f=—c0

k
_ j(0.3-9—0.2-k)-f5(9)d6+ 0.1-k- f5(8)do =

f=—c0 7,

T8

k k 00
—03- f@-fg(@)d@—o.z-k- jfg(@)d9+0.1-k- ffg(@)d@z
0=k

f=—0o0 G=—o0
k
=0.3- fH-fg(H)dH—O.Z-k-Fg(k)+O.1-k-(1—F§(k))=
f=—o0

k
=03 - f 6 f5(6)d6 —0.3 k- Fz(k) +0.1-k

f=—o0



; ‘ 1 (6—p)*
j 0-f5(0)do = J 0 - e 202 df =(Form Gaussian integrals) =

f=—o0 O=—0o0

(o (252) ) =
—g° — + . e 20 =
a? H oV2m
k k
2 \/_1 j ( 9_#) “H o J L o
= —0g~“ - . — e 20 + . e 20 =
oV2m 0 o o? H oV2T

k
1 _(e—li)z 1 _(k—ﬂ)z
z'am'[e 2 ]9=—oo+ﬂ‘F’é(k)=—02° (e —0)+M'F’9‘(k)

=—0
=—0?- fglk) + u- Fg(k)

= E(R(a,0)) = 0.3+ (=02 f5(k) + - F5(k)) — 0.3 -k - F5(k) + 0.1+ k =

=03-(u—k)-Fz(k) —03-0%- fz(k) + 0.1k



Hence, the optimal action with respect to the ER-criterion will be obtained from

max;{0.3- (u—k) - Fz(k) —03-02- fz(k) + 0.1k}

A bit tricky to find the maximum from differential calculus.

Search maximum by graphing and grid-searching. Note that k must be an integer.

500
500

781.8398

781.8394

-500
|
50

-1000
1000

781.8390

T T T \ \ \ T T T T T \ T ' T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000 9136 9138 9140 9142 9144
k k k

The optimal action is to order 9139 hot dogs.



EVPI = EL(a,,)

L(ay, ) = max; (R(aj, 9)) — R(ay, 0)

B 0.1k ifk <6
R(ay,0) —{0_3.9_0_2-k ifk > 6

— max; (R (aj, 9)) is obtained when q; = 6

- L(akﬂf)::R(H,H)—-R(ak,H)

01-(0—k) ifk<6

— Could be intuitively found
L(2,6) {O.Z-(k—@) ifk > 6 g

co

E(L(ay)) = J L(ay,0) - f5(6)d6 =

f=—0o0

oo

k
= | 02— @0+ [ 010 -1 f5(0)d0 -
O=—oc0 0=k



k k
—02-k ffg(@)d@—o.z- j@-fg(e)d9+

f=—c0 @=—0o0

+0.1 - j 0-f5(0)d0—0.1-k j f5(8)d6 = (from previous calculations) =
0=k 0=k

o EEm EEm o O o oy,

=02k Fz(k) —0.2- (—02 falk) + - F'g(k)) +0.1-!

o=k _ _____ .
—01-k- (1 _ Fg(k))
j 6 - f5(8)d6 = (Analogous to previous calculations) =
0=k
1 [ _M]‘” 1 ( _(k—u)Z)
=—g?. lem 207 g +p-(1—Fz(k))=—0?- -\0—e 202 /4
oV2m o=k TH ( 9( )) oV2m

+u- (1= Fa()) = 0% - f50) + - (1 - F5(k))



= E(L(ay)) =02 k- F5(k) — 0.2 - (—02 Fa(k) + - Fg(k)) +

+0.1 - (02 NOETE (1 - F@—(k))) —01-k- (1 - Fg(k)) -

=02k Fg(k) =02+ (—0? - f5(k)) — 0.2+ p- F5(k) + 0.1+ (% - f5(k)) + 0.1
—0.1-p-Fz(k) —0.1-k+0.1-k-Fgz(k) =
=03-k-Fy(k)—03-pu-Fy(k) +03-02- fz(k) +0.1-p— 0.1k =

=03:(k—p) - Fgk)+03:-0%: fz(k)+0.1-(u—k)

= EVPI = E (L(aODt)) = E(L(a9139)) =
= 0.3:(9139 —10000) - F§(9139) + 0.3 -2000% - f§(9139) + 0.1- (10000 —9139)

 ycg3.p 9139 — 10000 + 0320002 1 9139 — 10000 1729
- oz 2000 ' 2000 Iz 2000 -

~ 218 (dollar)




Alternative means of calculation:
E(L(a,8)) = E(R(0,0)) — E(R(ay,0)) =

=E(R(6,0)) —03-(u—k)-Fz(k) +03-02%- fz(k)—0.1-k

co

E(R(6,0)) = fR(H,H)-fg(H)M:

@=—c0

k (o)
j(0.3-9—0.2-9)-f§(0)d8+ fO.l-H-fg(B)d9=
0=k

f=—c0

k

— jo.1-9-f~9«(0)d9+ jo.1-9-f~9«(0)d0= f0.1-0-f~9«(0)d9=
0=k f=—c0

f=—o0

=0.1-E(6) = 1000

— E (L(aopt)) = E(L(ag139)) =

= 1000 — 0.3 - (10000 — 9139) - F5(9139) + 0.3 - 20004 - f5(9139) — 0.1-9139 =
~ 218



The decisive approach to statistical inference, part |

Point estimation of an unknown parameter &

The decision rule is a point estimator (the functional form): &(%) = 6(%)

The action is a particular point estimate. 4 , . = §(x)

State of nature is the true value of 4.

The loss function is a measure of how far away the estimator is from 6.
L(6(%),0) =L(8,0)

Prior information is quantified by the prior distribution (pdf/pmf) ' (8).

Data is the random sample x from a distribution with (pdf/pmf) f(x|6).



Three simple loss functions (univariate case)

Zero-one loss:

Absolute error loss:

L(0,0)=k-|0-6| k>0
Quadratic (error) loss (or squared loss):

L(0,0)=k-(6—0)" k>0

V4




Bayes estimators:

A Bayes estimator is the estimator that minimizes the expected posterior loss:

EL" (6(x)) = j L((x),6) - f"(6]x)d6

0

= Op(x) = main J L(6(x),0)-f"(6]x)d6
0

Minimization with respect to different loss functions will result in measures of
location in the posterior distribution of &.

Zero-one loss: d,(x) is the posterior mode for @ given x

Absolute error loss: (x) is the posterior median for & given x
X

Op
Quadratic loss: 98( ) Is the posterior mean for € given X: E(@x)



Example

Assume we have a sample x = (X4, ..., X, ) from U (0,8) and that a prior
density for @1is the Pareto density ‘

f'Ola,f)=(a—1)-B*1-67% ,6=>2,a>1,>0

What is the Bayes estimator of & under quadratic loss?

The posterior distribution is also Pareto with Xy = max{xy, ..., Xy}

at+tn—1

fr@nxap)=(a+n-1)- (max{B,xu}) 07,0 2 max{p, xm}

(00)

= éB = E(§|x) = j 6 . (a +n— 1) . (maX{ﬁ, x(n)})a+n—1 . 9_(a+n)d8 _
6=max{p,xn)}
= (a +n — 1) . (max{ﬂ, x(n)})(l+7’l—1 . j 9 - 8—(0(+Tl—1)d8 —

6 =max{B,xn)}
_a+n-—1

Ca+n-—2

maxif, x ith 6
X{B, X(n)) Compare wWith 0y, 5 = X ()



Minimax estimators:

Find the value of @ that maximizes the expected loss with respect to the sample
values, 1.e. that maximizes the risk over the set of estimators.

Then, the particular estimator that minimizes the risk for that value of &is the
minimax estimator.

O minimax = argmin (max D(5, 9))
5 0

Usually difficult to find minimax estimators, but there is one method to find it via
a Bayes’ estimator.

Theorem (actually a corollary of a theorem both presented in ”Lehmann E.L. Theory of point
estimation. Wiley, 1983”)

If a Bayes’ estimator has constant risk. [I.e. not dependent on 4] it is also a
minimax estimator.




Example We wish to estimate the parameter p under quadratic loss in a binomial
sampling model for sample size n. Hence we (will) have observed a random
variable 7 that is Bi(n, p).

We (should) know that (with n fixed) the maximum-likelihood estimator of p is
7

PmLE = "
but can we find a minimax estimator under quadratic loss?

A Bayes’ estimator under quadratic loss is the posterior mean of p, hence we need to
specify a prior distribution — Natural to use the conjugate beta distribution with
density function

, p¢l.(1-p)bt ['(a) - T(b)
f'(pla,b) = B(a.b) 0<p<1 B(a,b) = F(atb)

The posterior density function is then

pa+r—1 . (1 . p)b+n—r—1

f"(pln,r,a,b) = Blatrbtn—1)

and the Bayes’ estimator 1s 1ts mean:

A o a+rt a+rt
pp = Pp(F)

T a+r+b+n—r a+b+n &




a—+rt
The risk function for this estimator is a+b+n

D@5 1) = Ex((Bs 1)) = ) (s —p*+ ()" (1 =p)" =
=0

2

DR

2-a-p AT 2-a 2:p N
(a+b+n)2 at+b+n P (a+b+n)2 a+b+n 4

2

N 1 5 (n) e ) = a 2-a-p e
(@+b+n)2 r) P Pr=@+bp+n? a+b+n ?

n

+<(a+2b':l—n)2 a+b+n> Zr () pr.(l_p)r+(a+b1+n)z'zrz'(Z)‘Pr‘(l—P)r

r=0 r=0
J

\ J
! |

EF|p) E(#?|p) =
Var(7|p) + (E(flp))?%




EFlp)=n-p PE= b +n

Var(#p) =n-p- (1 —p)

= D(Pp,p) = @ £ ap +p2 + £ d 2P +
Peb) = a+b+n? a+b+n P "\a+b+n? a+b+n) P
b (p =)+ (1)) = e =
(a+ b+ n)? nep P npraE
1

:(a+b+n)2'(az"‘("_Z'Cl'(a"'b))'P"'((a"'b)z_n)'pz)

This risk function will be constant (for fixed n) if

(n—2-a-(a+b))=0 and  ((@+b)?—n)=0



Hence, the estimator

n ~
5, = g‘FT :\/ﬁ+2 7
Fyn  Vn Vn+n
T+T+Tl

1s a Bayes’ estimator with constant risk, and according to the theorem above it
IS also a minimax estimator.

The value of the constant (but actually n-dependent) risk is

! -<E+0- +0- 2)— - = .
(x/ﬁ+\/ﬁ+n2 2P T W T - (Ve
22

Exercise:

Is p5 unbiased? What is the risk of the unbiased p,,; r = #/n? For which range
of n is the risk of pz lower than the risk of ;. ?




