
Meeting 13:

More examples on the value of 

information (and with influence 

diagrams)

The decisive approach to statistical 

inference. Part I



Exercise 7.14



The action to be taken is how many houses to be built, 

i.e. ak = “Build k houses” , k = 0,1,2,3,4,5,6 (the number cannot be higher than the 

maximum value of 𝜃.

The state of the world is how many houses, 𝜃 , that will be sold within tree months 

of completion. Possible values are 0, 1, 2, 3, 4, 5, 6.

For each house built the payoff is 4 thousand dollars if it is sold and –1 thousand 

dollars if it has to be sold to a realtor. 

𝑅 𝑎𝑘 , 𝜃 = ቊ
4 ∙ 𝑘 if 𝑘 ≤ 𝜃

4 ∙ 𝜃 − 1 ∙ 𝑘 − 𝜃 = 5 ∙ 𝜃 − 𝑘 if 𝑘 > 𝜃

The payoff function can then be written



The payoff table then becomes

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 –1 4 4 4 4 4 4

2 –2 3 8 8 8 8 8

3 –3 2 7 12 12 12 12

4 –4 1 6 11 16 16 16

5 –5 0 5 10 15 20 20

6 –6 –1 4 9 14 19 24

𝜃𝑎𝑘

The (prior) probability distribution of ෨𝜃 is 

𝜃 0 1 2 3 4 5 6

𝑃 ෨𝜃 = 𝜃 0.05 0.10 0.10 0.20 0.25 0.20 0.10



The (prior) expected payoffs for each action are

𝐸𝑅 𝑎𝑘

0 0

1 (–1)0.05 + 40.10 + 40.10 + 40.20 + 40.25 + 40.20 + 40.10 = 3.75

2 (–2)0.05 + 30.10 + 80.10 + 80.20 + 80.25 + 80.20 + 80.10 = 7

3 (–3)0.05 + 20.10 + 70.10 + 120.20 + 120.25 + 120.20 + 120.10 = 9.75

4 (–4)0.05 + 10.10 + 60.10 + 110.20 + 160.25 + 160.20 + 160.10 = 11.5

5 (–5)0.05 + 00.10 + 50.10 + 100.20 + 150.25 + 200.20 + 200.10 = 12

6 (–6)0.05 + (–1)0.10 + 40.10 + 90.20 + 140.25 + 190.20 + 240.10 = 11.5

𝑎𝑘

 The optimal action according to the ER-criterion is to build 5 houses.



Losses for a5 ( 𝐿 𝑎𝑘 , 𝜃 = max𝑖 𝑅 𝑎𝑖 , 𝜃 − 𝑅 𝑎𝑘 , 𝜃 )

0 1 2 3 4 5 6

max𝑘 𝑅 𝑎𝑘 , 𝜃 0 4 8 12 16 20 24

𝑅 𝑎5, 𝜃 –5 0 5 10 15 20 20

𝐿 𝑎5, 𝜃 5 4 3 2 1 0 4

𝜃

 The expected loss for action a5 is

50.05 + 40.10 + 30.10 + 20.20 + 30.25 + 00.20 + 40.10 = 2 

Since EVPI = EL(aopt) the contractor should be willing to pay 2 thousand dollars to 

find out for certain how many houses will be sold.



Influence diagram:

Note that no evidence node with observed data is present. The inference is from the 

prior distribution of  .

With Hugin:



Tables:

A drawback here is that the 

utility table cannot be viewed as 

a two-way table. 



0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 –1 4 4 4 4 4 4

2 –2 3 8 8 8 8 8

3 –3 2 7 12 12 12 12

4 –4 1 6 11 16 16 16

5 –5 0 5 10 15 20 20

6 –6 –1 4 9 14 19 24

Utilities (here payoffs) from the payoff table shall be entered column wise. 

𝜃𝑎𝑘



Run the network (flash icon). 





We could also as utilities enter the losses with negative sign.

0 1 2 3 4 5 6

0 0 – 0 =

0

4 – 0 = 

4

8 – 0 = 

8
12 – 0 =

12 

16 – 0 =

16

20 – 0 =

20

24 – 0 = 

24

1 0 – (–1) =

1 

4 – 4 = 

0
8 – 4 =

4

12 – 4 =

8

16 – 4 =

12

20 – 4 =

16

24 – 4 =

20

2 0 – (–2) = 

2 

4 – 3 = 

1

8 – 8 =

0
12 – 8 =

4

16 – 8 =

8

20 – 8 =

12

24 – 8 = 

16

3 0 – (–3) =

3 

4 – 2 = 

2

8 – 7 =

1
12 – 12 =

0

16 – 12 =

4

20 – 12 =

8

24 – 12 =

12

4 0 – (–4) =

4 

4 – 1 =

3

8 – 6 =

2

12 – 11 =

1

16 – 16 =

0

20 – 16 =

4

24 – 16 =

8

5 0 – (–5) =

5 

4 – 0 = 

4

8 – 5 =

3

12 – 10 = 

2
16 – 15 =

1

20 – 20 = 

0
24 – 20 =

4

6 0 – (–6) =

6 

4 – (–1) =

5

8 – 4 =

4

12 – 9 =

3

16 – 14 =

2

20 – 19 =

1

24 – 24 =

0

max𝑘 𝑅 𝑎𝑘 , 𝜃 0 4 8 12 16 20 24

𝜃𝑎𝑘

𝐿 𝑎𝑘 , 𝜃 = max𝑖 𝑅 𝑎𝑖 , 𝜃 − 𝑅 𝑎𝑘 , 𝜃



…and run. 



…and we can at the same time answer the second 

question (EVPI = 2 000 $)

Building 5 houses will give the least expected loss 

(2 thousand dollars)



The Hugin software (like several other software) is limited when it comes to 

continuous probability distributions.

Commercial Hugin licences can handle normally distributed nodes but not other 

continuous probability distributions.

This “drawback” is due to that the internal probability calculations within the Hugin

engine are exact, and therefore conjugate families with analytically deduced 

normalisation constants are the only feasible ones.  

Many problems may however get acceptable solutions by discretising the probability 

density functions.

A lot of Bayesian inference can be achieved by using MCMC, but the demonstration 

of the solution becomes much less transparent.

Some research have been made for implementing algorithms based on numerical 

integration (and not MCMC) to obtain approximations to exact probability calculus 

in Bayesian networks: “Simonsson I. (2018). Exact inference in Bayesian networks 

and applications in forensic statistics. Doktorsavhandlingar vid Chalmers tekniska 

högskola – No. 4499. Chalmers University of Technology, Sweden.”



Exercise 7.15

Let  = Demand in no. of hot dogs

ak = Order k hot dogs (action)

The prior distribution of  ෨𝜃 is 𝑁 𝜇 = 10000, 𝜎 = 2000

𝑅 𝑎𝑘 , 𝜃 = ቊ
0.10 ∙ 𝑘 if 𝑘 ≤ 𝜃

0.10 ∙ 𝜃 − 0.20 ∙ 𝑘 − 𝜃 = 0.3 ∙ 𝜃 − 0.2 ∙ 𝑘 if 𝑘 > 𝜃

The payoff function is (cf. Exercise 7.14):

⟹ The pdf of ෨𝜃 is 𝑓෩𝜃 𝜃 =
1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 and the cdf of ෨𝜃 is 

𝐹෩𝜃 𝜃 =
1

𝜎 2𝜋
∙ න

𝑥=∞

𝜃

𝑒
−
𝑥−𝜇 2

2𝜎2 𝑑𝑥



The expected payoff with action ak is

𝐸 𝑅 𝑎𝑘 , 𝜃 = න

𝜃=−∞

∞

𝑅 𝑎𝑘 , 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= න

𝜃=−∞

𝑘

0.3 ∙ 𝜃 − 0.2 ∙ 𝑘 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 + න

𝜃=𝑘

∞

0.1 ∙ 𝑘 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= 0.3 ∙ න

𝜃=−∞

𝑘

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 − 0.2 ∙ 𝑘 ∙ න

𝜃=−∞

𝑘

𝑓෩𝜃 𝜃 𝑑𝜃 + 0.1 ∙ 𝑘 ∙ න

𝜃=𝑘

∞

𝑓෩𝜃 𝜃 𝑑𝜃 =

= 0.3 ∙ න

𝜃=−∞

𝑘

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 − 0.2 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 + 0.1 ∙ 𝑘 ∙ 1 − 𝐹෩𝜃 𝑘 =

= 0.3 ∙ න

𝜃=−∞

𝑘

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 − 0.3 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 + 0.1 ∙ 𝑘



න

𝜃=−∞

𝑘

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 = න

𝜃=−∞

𝑘

𝜃 ∙
1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝑑𝜃 = Form Gaussian integrals =

= න

𝜃=−∞

𝑘

−𝜎2 ∙ −
𝜃 − 𝜇

𝜎2
+ 𝜇 ∙

1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝑑𝜃 =

= −𝜎2 ∙
1

𝜎 2𝜋
∙ න

𝜃=−∞

𝑘

−
𝜃 − 𝜇

𝜎2
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝑑𝜃 + 𝜇 ∙ න

𝜃=−∞

𝑘
1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝑑𝜃 =

= −𝜎2 ∙
1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝜃=−∞

𝑘

+ 𝜇 ∙ 𝐹෩𝜃 𝑘 = −𝜎2 ∙
1

𝜎 2𝜋
∙ 𝑒

−
𝑘−𝜇 2

2𝜎2 − 0 + 𝜇 ∙ 𝐹෩𝜃 𝑘 =

= −𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 𝐹෩𝜃 𝑘

⟹ 𝐸 𝑅 𝑎𝑘 , 𝜃 = 0.3 ∙ −𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 𝐹෩𝜃 𝑘 − 0.3 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 + 0.1 ∙ 𝑘 =

= 0.3 ∙ 𝜇 − 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.3 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 0.1 ∙ 𝑘



Hence, the optimal action with respect to the ER-criterion will be obtained from

max𝑘 0.3 ∙ 𝜇 − 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.3 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 0.1 ∙ 𝑘

A bit tricky to find the maximum from differential calculus.

Search maximum by graphing and grid-searching. Note that k must be an integer.

The optimal action is to order 9139 hot dogs.



EVPI = EL(aopt)

𝐿 𝑎𝑘 , 𝜃 = max𝑗 𝑅 𝑎𝑗 , 𝜃 − 𝑅 𝑎𝑘 , 𝜃

𝑅 𝑎𝑘 , 𝜃 = ቊ
0.1 ∙ 𝑘 if 𝑘 ≤ 𝜃

0.3 ∙ 𝜃 − 0.2 ∙ 𝑘 if 𝑘 > 𝜃

⟹ max𝑗 𝑅 𝑎𝑗 , 𝜃 is obtained when 𝑎𝑗 = 𝜃

⟹ 𝐿 𝑎𝑘 , 𝜃 = 𝑅 𝜃, 𝜃 − 𝑅 𝑎𝑘 , 𝜃

𝐿 𝑎𝑘 , 𝜃 = ቊ
0.1 ∙ 𝜃 − 𝑘 if 𝑘 ≤ 𝜃
0.2 ∙ 𝑘 − 𝜃 if 𝑘 > 𝜃

𝐸 𝐿 𝑎𝑘 = න

𝜃=−∞

∞

𝐿 𝑎𝑘 , 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= න

𝜃=−∞

𝑘

0.2 ∙ 𝑘 − 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 + න

𝜃=𝑘

∞

0.1 ∙ 𝜃 − 𝑘 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

Could be intuitively found



= 0.2 ∙ 𝑘 න

𝜃=−∞

𝑘

𝑓෩𝜃 𝜃 𝑑𝜃 − 0.2 ∙ න

𝜃=−∞

𝑘

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 +

+0.1 ∙ න

𝜃=𝑘

∞

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 − 0.1 ∙ 𝑘 න

𝜃=𝑘

∞

𝑓෩𝜃 𝜃 𝑑𝜃 = from previous calculations =

= 0.2 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.2 ∙ −𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 𝐹෩𝜃 𝑘 + 0.1 ∙ න

𝜃=𝑘

∞

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃

න

𝜃=𝑘

∞

𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 = Analogous to previous calculations =

= −𝜎2 ∙
1

𝜎 2𝜋
∙ 𝑒

−
𝜃−𝜇 2

2𝜎2 𝜃=𝑘

∞

+ 𝜇 ∙ 1 − 𝐹෩𝜃 𝑘 = −𝜎2 ∙
1

𝜎 2𝜋
∙ 0 − 𝑒

−
𝑘−𝜇 2

2𝜎2 +

+𝜇 ∙ 1 − 𝐹෩𝜃 𝑘 = 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 1 − 𝐹෩𝜃 𝑘

−0.1 ∙ 𝑘 ∙ 1 − 𝐹෩𝜃 𝑘



⟹ 𝐸 𝐿 𝑎𝑘 = 0.2 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.2 ∙ −𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 𝐹෩𝜃 𝑘 +

+0.1 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 𝜇 ∙ 1 − 𝐹෩𝜃 𝑘 − 0.1 ∙ 𝑘 ∙ 1 − 𝐹෩𝜃 𝑘 =

= 0.2 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.2 ∙ −𝜎2 ∙ 𝑓෩𝜃 𝑘 − 0.2 ∙ 𝜇 ∙ 𝐹෩𝜃 𝑘 + 0.1 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 0.1 ∙ 𝜇

= 0.3 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 − 0.3 ∙ 𝜇 ∙ 𝐹෩𝜃 𝑘 + 0.3 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 0.1 ∙ 𝜇 − 0.1 ∙ 𝑘 =

= 0.3 ∙ 𝑘 − 𝜇 ∙ 𝐹෩𝜃 𝑘 + 0.3 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 + 0.1 ∙ 𝜇 − 𝑘

⟹ 𝐸𝑉𝑃𝐼 = 𝐸 𝐿 𝑎opt = 𝐸 𝐿 𝑎9139 =

= 0.3 ∙ 9139 − 10000 ∙ 𝐹෩𝜃 9139 + 0.3 ∙ 20002 ∙ 𝑓෩𝜃 9139 + 0.1 ∙ 10000 − 9139

= −258.3 ∙ 𝐹𝑍
9139 − 10000

2000
+ 0.3 ∙ 20002 ∙

1

2000
∙ 𝑓𝑍

9139 − 10000

2000
+ 172.2 ≈

−0.1 ∙ 𝜇 ∙ 𝐹෩𝜃 𝑘 − 0.1 ∙ 𝑘 + 0.1 ∙ 𝑘 ∙ 𝐹෩𝜃 𝑘 =

≈ 218 (dollar)



𝐸 𝐿 𝑎𝑘 , 𝜃 = 𝐸 𝑅 𝜃, 𝜃 − 𝐸 𝑅 𝑎𝑘 , 𝜃 =

= 𝐸 𝑅 𝜃, 𝜃 − 0.3 ∙ 𝜇 − 𝑘 ∙ 𝐹෩𝜃 𝑘 + 0.3 ∙ 𝜎2 ∙ 𝑓෩𝜃 𝑘 − 0.1 ∙ 𝑘

𝐸 𝑅 𝜃, 𝜃 = න

𝜃=−∞

∞

𝑅 𝜃, 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= න

𝜃=−∞

𝑘

0.3 ∙ 𝜃 − 0.2 ∙ 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 + න

𝜃=𝑘

∞

0.1 ∙ 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= න

𝜃=−∞

𝑘

0.1 ∙ 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 + න

𝜃=𝑘

∞

0.1 ∙ 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 = න

𝜃=−∞

∞

0.1 ∙ 𝜃 ∙ 𝑓෩𝜃 𝜃 𝑑𝜃 =

= 0.1 ∙ 𝐸 ෨𝜃 = 1000

⟹ 𝐸 𝐿 𝑎opt = 𝐸 𝐿 𝑎9139 =

= 1000 − 0.3 ∙ 10000 − 9139 ∙ 𝐹෩𝜃 9139 + 0.3 ∙ 20002 ∙ 𝑓෩𝜃 9139 − 0.1 ∙ 9139 =

≈ 218

Alternative means of calculation:



The decisive approach to statistical inference, part I

Point estimation of an unknown parameter :

The decision rule is a point estimator (the functional form): 

The action is a particular point estimate.

State of nature is the true value of .

The loss function is a measure of how far away the estimator is from  :

Prior information is quantified by the prior distribution (pdf/pmf) 𝑓′ 𝜃 .

Data is the random sample x from a distribution with (pdf/pmf)  𝑓 𝒙 𝜃 .

𝛿 ෥𝒙 = ෠𝜃 ෥𝒙

෠𝜃𝑜𝑏𝑠 = ෠𝜃 𝒙

𝐿 𝛿 ෥𝒙 , 𝜃 = 𝐿 ෠𝜃, 𝜃



Three simple loss functions (univariate case)

Zero-one loss:

Absolute error loss:

Quadratic (error) loss (or squared loss):

𝐿 ෠𝜃, 𝜃 = ቊ
0 ෠𝜃 − 𝜃 < 𝑚

𝑘 ෠𝜃 − 𝜃 ≥ 𝑚
𝑘,𝑚 > 0

𝐿 ෠𝜃, 𝜃 = 𝑘 ∙ ෠𝜃 − 𝜃 𝑘 > 0

𝐿 ෠𝜃, 𝜃 = 𝑘 ∙ ෠𝜃 − 𝜃
2

𝑘 > 0



Bayes estimators:

A Bayes estimator is the estimator that minimizes the expected posterior loss:

Minimization with respect to different loss functions will result in measures of 

location in the posterior distribution of .

Zero-one loss: 

Absolute error loss:

Quadratic loss:

( )  given   for    mode posterior     theis  ˆ xx B

( )  given   for  median   posterior     theis  ˆ xx B

( ) ( )xxx  EB  : given   for  mean   posterior     theis  ˆ

𝐸𝐿′′ መ𝜃 𝒙 = න

𝜃

𝐿 መ𝜃 𝒙 , 𝜃 ∙ 𝑓′′ 𝜃 𝒙 𝑑𝜃

⟹ መ𝜃𝐵 𝒙 = min
𝛿

න

𝜃

𝐿 𝛿 𝒙 , 𝜃 ∙ 𝑓′′ 𝜃 𝒙 𝑑𝜃



Example

Assume we have a sample x = (x1, … , xn ) from U (0, ) and that a prior 

density for  is the Pareto density

What is the Bayes estimator of  under quadratic loss?

The posterior distribution is also Pareto with

 = 3

 = 1

⇒ ෨𝜃𝐵 = 𝐸 ෨𝜃 𝒙 = න

𝜃=max 𝛽,𝑥 𝑛

∞

𝜃 ∙ 𝛼 + 𝑛 − 1 ∙ max 𝛽, 𝑥 𝑛
𝛼+𝑛−1

∙ 𝜃− 𝛼+𝑛 𝑑𝜃 =

= 𝛼 + 𝑛 − 1 ∙ max 𝛽, 𝑥 𝑛
𝛼+𝑛−1

∙ න

𝜃=max 𝛽,𝑥 𝑛

∞

𝜃 ∙ 𝜃− 𝛼+𝑛−1 𝑑𝜃 =

=
𝛼 + 𝑛 − 1

𝛼 + 𝑛 − 2
max 𝛽, 𝑥 𝑛

𝑓′ 𝜃 𝛼, 𝛽 = 𝛼 − 1 ∙ 𝛽𝛼−1 ∙ 𝜃−𝛼 , 𝜃 ≥ 2; 𝛼 > 1; 𝛽 > 0

𝑓′′ 𝜃 𝑛, 𝒙, 𝛼, 𝛽 = 𝛼 + 𝑛 − 1 ∙ max 𝛽, 𝑥 𝑛
𝛼+𝑛−1

∙ 𝜃− 𝛼+𝑛 , 𝜃 ≥ max 𝛽, 𝑥 𝑛

Compare with መ𝜃𝑀𝐿𝐸 = 𝑥 𝑛

𝑥 𝑛 = 𝑚𝑎𝑥 𝑥1, … , 𝑥𝑛



Minimax estimators:

Find the value of  that maximizes the expected loss with respect to the sample 

values, i.e. that maximizes the risk over the set of estimators. 

Then, the particular estimator that minimizes the risk for that value of  is the 

minimax estimator.

መ𝜃minimax = argmin
𝛿

max
𝜃

𝐷 𝛿, 𝜃

Usually difficult to find minimax estimators, but there is one method to find it via 

a Bayes’ estimator.

Theorem (actually a corollary of a theorem both presented in ”Lehmann E.L. Theory of point 

estimation. Wiley, 1983”)

If a Bayes’ estimator has constant risk. [i.e. not dependent on ] it is also a 

minimax estimator.



Example We wish to estimate the parameter p under quadratic loss in a binomial 

sampling model for sample size n. Hence we (will) have observed a random 

variable ǁ𝑟 that is Bi(n, p).

We (should) know that (with n fixed) the maximum-likelihood estimator of p is 

Ƹ𝑝𝑀𝐿𝐸 =
ǁ𝑟

𝑛
but can we find a minimax estimator under quadratic loss?

A Bayes’ estimator under quadratic loss is the posterior mean of p, hence we need to 

specify a prior distribution – Natural to use the conjugate beta distribution with 

density function 

The posterior density function is then  

𝑓′ 𝑝 𝑎, 𝑏 =
𝑝𝑎−1 ∙ 1 − 𝑝 𝑏−1

𝐵 𝑎, 𝑏
0 ≤ 𝑝 ≤ 1 𝐵 𝑎, 𝑏 =

Γ 𝑎 ∙ Γ 𝑏

Γ 𝑎 + 𝑏

𝑓′′ 𝑝 𝑛, 𝑟, 𝑎, 𝑏 =
𝑝𝑎+𝑟−1 ∙ 1 − 𝑝 𝑏+𝑛−𝑟−1

𝐵 𝑎 + 𝑟, 𝑏 + 𝑛 − 𝑟

and the Bayes’ estimator is its mean:  

Ƹ𝑝𝐵 = Ƹ𝑝𝐵 ǁ𝑟 =
𝑎 + ǁ𝑟

𝑎 + 𝑟 + 𝑏 + 𝑛 − 𝑟
=

𝑎 + ǁ𝑟

𝑎 + 𝑏 + 𝑛



The risk function for this estimator is  
Ƹ𝑝𝐵 =

𝑎 + ǁ𝑟

𝑎 + 𝑏 + 𝑛

𝐷 Ƹ𝑝𝐵, 𝑝 = 𝐸෤𝑟 Ƹ𝑝𝐵 − 𝑝 2 = ෍

𝑟=0

𝑛

Ƹ𝑝𝐵 − 𝑝 2 ∙
𝑛

𝑟
∙ 𝑝𝑟 ∙ 1 − 𝑝 𝑟 =

= ෍

𝑟=0

𝑛
𝑎 + 𝑟

𝑎 + 𝑏 + 𝑛
− 𝑝

2

∙
𝑛

𝑟
∙ 𝑝𝑟 ∙ 1 − 𝑝 𝑟 =

= ෍

𝑟=0

𝑛

ቈ
𝑎2

𝑎 + 𝑏 + 𝑛 2 −
2 ∙ 𝑎 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
+ 𝑝2 +

2 ∙ 𝑎

𝑎 + 𝑏 + 𝑛 2 −
2 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
∙ 𝑟 +

𝐸 ǁ𝑟 𝑝 𝐸 ǁ𝑟2 𝑝 =

+ ቉
1

𝑎 + 𝑏 + 𝑛 2
∙ 𝑟2 ∙

𝑛

𝑟
∙ 𝑝𝑟 ∙ 1 − 𝑝 𝑟 =

𝑎2

𝑎 + 𝑏 + 𝑛 2
−

2 ∙ 𝑎 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
+ 𝑝2 +

𝑉𝑎𝑟 ǁ𝑟 𝑝 + 𝐸 ǁ𝑟 𝑝
2

+
2 ∙ 𝑎

𝑎 + 𝑏 + 𝑛 2
−

2 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
∙෍

𝑟=0

𝑛

𝑟 ∙
𝑛

𝑟
∙ 𝑝𝑟 ∙ 1 − 𝑝 𝑟 +

1

𝑎 + 𝑏 + 𝑛 2
∙෍

𝑟=0

𝑛

𝑟2 ∙
𝑛

𝑟
∙ 𝑝𝑟 ∙ 1 − 𝑝 𝑟



Ƹ𝑝𝐵 =
𝑎 + ǁ𝑟

𝑎 + 𝑏 + 𝑛𝐸 ǁ𝑟 𝑝 = 𝑛 ∙ 𝑝

𝑉𝑎𝑟 ǁ𝑟 𝑝 = 𝑛 ∙ 𝑝 ∙ 1 − 𝑝

⟹ 𝐷 Ƹ𝑝𝐵, 𝑝 =
𝑎2

𝑎 + 𝑏 + 𝑛 2 −
2 ∙ 𝑎 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
+ 𝑝2 +

2 ∙ 𝑎

𝑎 + 𝑏 + 𝑛 2 −
2 ∙ 𝑝

𝑎 + 𝑏 + 𝑛
∙ 𝑛 ∙ 𝑝 +

+
1

𝑎 + 𝑏 + 𝑛 2 ∙ 𝑛 ∙ 𝑝 ∙ 1 − 𝑝 + 𝑛 ∙ 𝑝 2 = ⋯ =

=
1

𝑎 + 𝑏 + 𝑛 2 ∙ 𝑎2 + 𝑛 − 2 ∙ 𝑎 ∙ 𝑎 + 𝑏 ∙ 𝑝 + 𝑎 + 𝑏 2 − 𝑛 ∙ 𝑝2

This risk function will be constant (for fixed n) if 

𝑛 − 2 ∙ 𝑎 ∙ 𝑎 + 𝑏 = 0 and 𝑎 + 𝑏 2 − 𝑛 = 0

⇔ 𝑎 = 𝑏 =
𝑛

2



Hence, the estimator

Ƹ𝑝𝐵 =

𝑛
2 + ǁ𝑟

𝑛
2 +

𝑛
2 + 𝑛

=
𝑛 + 2 ∙ ǁ𝑟

𝑛 + 𝑛

is a Bayes’ estimator with constant risk, and according to the theorem above it 

is also a minimax estimator.

The value of the constant (but actually n-dependent) risk is 

1

𝑛
2 +

𝑛
2 + 𝑛

2 ∙
𝑛

4
+ 0 ∙ 𝑝 + 0 ∙ 𝑝2 =

𝑛

4 ∙ 𝑛 + 𝑛 2
=

1

4 ∙ 1 + 𝑛 2

Exercise:

Is Ƹ𝑝𝐵 unbiased? What is the risk of the unbiased Ƹ𝑝𝑀𝐿𝐸 = Τǁ𝑟 𝑛? For which range 

of n is the risk of Ƹ𝑝𝐵 lower than the risk of Ƹ𝑝𝑀𝐿𝐸?


