Meeting 12: Even more on the value of information

Sequential analysis

When the value of sample information concerns the entire sample (sometimes referred to as *single-stage sampling*) the expected net gain of sampling can be written

$$ENGS(n) = EVSI(n) - CS(n)$$

...and the optimal sample size n^* satisfies

$$ENGS(n *) \ge ENGS(n)$$
 for $n = 0,1,2,...$

However, it is also possible to sample one unit at time and at each step decide whether further sampling should be conducted. This is referred to as *sequential sampling*.

In the textbook there is no attempt to formulate a general description of sequential sampling, since it is a concept closely related to the decision problem at hand.

However, to clarify things it may often be wise to draw decision trees.

Exercise 6.27

- 27. In Exercise 17, consider a sequential sampling plan with a maximum total sample size of two and analyze the problem as follows.
 - (a) Represent the situation in terms of a tree diagram.
 - (b) Using backward induction, find the ENGS for the sequential plan.
 - (c) Compare the sequential plan with a single-stage plan having n = 2.
- 17. In Exercise 16, suppose that you also want to consider other sample sizes.
 - (a) Find EVSI for a sample of size 2.
 - (b) Find EVSI for a sample of size 5.
 - (c) Find EVSI for a sample of size 10.
 - (d) If the cost of sampling is \$0.50 per unit sampled, find the expected net gain of sampling (ENGS) for samples of sizes 1, 2, 5, and 10.

Exercise 6.16 was demonstrated at Meeting 11

	PROPO	ORTION (OF CUSTO	MERS BU	JYING, $ heta$
DECISION	0.10	0.20	0.30	0.40	0.50
Stock 100	-10	-2	12	22	40
Stock 50	-4	6	12	16	16
Do not stock	0	0	0	0	0

- 16. In Exercise 15, suppose that sample information is available in the form of a random sample of consumers. For a sample of size *one*,
 - (a) find the posterior distribution if the one person sampled will purchase the item, and find the value of this sample information;
 - (b) find the posterior distribution if the one person sampled will not purchase the item, and find the value of this sample information;
 (c) EVSI(1) =8.64 7.80 = 0.84
 - (c) find the expected value of sample information.

- 17. In Exercise 16, suppose that you also want to consider other sample sizes.
 - (a) Find EVSI for a sample of size 2.
 - (b) Find EVSI for a sample of size 5.
 - (c) Find EVSI for a sample of size 10.
 - (d) If the cost of sampling is \$0.50 per unit sampled, find the expected net gain of sampling (ENGS) for samples of sizes 1, 2, 5, and 10.

	PROPO	PROPORTION OF CUSTOMERS BUYING, $ heta$										
DECISION	0.10	0.20	0.30	0.40	0.50							
Stock 100	-10	-2	12	22	40							
Stock 50	-4	6	12	16	16							
Do not stock	0	0	0	0	0							

(a)

We need to consider all possible outcomes in a sample of size 2, i.e.

BUY, BUY

BUY, NOT BUY

NOT BUY, BUY

NOT BUY, NOT BUY

However, the second and third outcome are equal by symmetry

	PROPO	ORTION (OF CUSTO	MERS B	JYING, $ heta$
DECISION	0.10	0.20	0.30	0.40	0.50
Stock 100	-10	-2	12	22	40
Stock 50	- 4	6	12	16	16
Do not stock	0	0	0	0	0

BUY, BUY:

Posterior distribution:
$$P(\theta | \text{BUY,BUY}) = \frac{P(\text{BUY,BUY} | \theta) \cdot P(\theta)}{P(\text{BUY,BUY} | \theta) \cdot P(\theta)} = \frac{P(\text{BUY,BUY} | \theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{BUY,BUY} | \lambda) \cdot P(\lambda)}$$

$$P(\text{BUY,BUY} | \theta) = \theta^{2} \Rightarrow P(\text{BUY,BUY}) = 0.10^{2} \cdot 0.2 + 0.20^{2} \cdot 0.3 + 0.30^{2} \cdot 0.3 + 0.40^{2} \cdot 0.1 + 0.50^{2} \cdot 0.1 = 0.082$$

$$P(0.10 | \text{BUY,BUY}) = 0.10^{2} \cdot 0.2 / 0.082 \approx 0.0244$$

$$P(0.20 | \text{BUY,BUY}) = 0.20^{2} \cdot 0.3 / 0.082 \approx 0.1463$$

$$P(0.30 | \text{BUY,BUY}) = 0.30^{2} \cdot 0.3 / 0.082 \approx 0.3293$$

$$P(0.40 | \text{BUY,BUY}) = 0.40^{2} \cdot 0.1 / 0.082 \approx 0.1951$$

$$P(0.50 | \text{BUY,BUY}) = 0.50^{2} \cdot 0.1 / 0.082 \approx 0.3049$$

```
VSI(BUY,BUY) = E''R(a''|BUY,BUY) - E''R(a'|BUY,BUY)
a' = \langle = a^* \text{ from exercise } 6.15 \rangle = \text{Stock } 50
a'' = \operatorname{argmax} ER(a|BUY,BUY)
ER(a|BUY,BUY) = \sum_{a} R(a,\theta) \cdot P(\theta|BUY,BUY)
\Rightarrow
ER(Stock 100|BUY,BUY)
= (-10) \cdot 0.0244 \dots + (-2) \cdot 0.1463 \dots + 12 \cdot 0.3293 \dots \pm 12 \cdot 0.1951 \dots + 40 \cdot 0.3049 \dots \approx 19.90
ER(Stock 50|BUY,BUY)
= (-4) \cdot 0.0244 \dots + 6 \cdot 0.1463 \dots + 12 \cdot 0.3293 \dots +
                          26 \cdot 0.1951 \dots + 16 \cdot 0.3049 \dots \approx 12.73
ER(Do not stock|BUY,BUY)
0 \cdot 0.1951 \dots + 0 \cdot 0.3049 \dots = 0
\Rightarrow a'' = \text{Stock } 100
\Rightarrow
VSI(BUY,BUY)
= E''R(\text{Stock }100|\text{BUY,BUY}) - E''R(\text{Stock }50|\text{BUY,BUY}) \approx
19.90 - 12.73 = 7.17
```

	PROPO	RTION C	F CUSTO	OMERS B	UYING, $ heta$
DECISION	0.10	0.20	0.30	0.40	0.50
Stock 100	-10	-2	12	22	40
Stock 50	-4	6	12	16	16
Do not stock	0	0	0	0	0

BUY, NOT BUY or NOT BUY, BUY:

Posterior distribution:

$$P(\theta | \text{BUY,NOT BUY}) = \frac{P(\text{BUY,NOT BUY}|\theta) \cdot P(\theta)}{P(\text{BUY,NOT BUY})} = \frac{P(\text{BUY,NOT BUY}|\theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{BUY,NOT BUY}|\lambda) \cdot P(\lambda)}$$

$$P(\text{BUY,NOT BUY}|\theta) = \theta \cdot (1 - \theta)$$

$$P(\text{BUY,NOT BUY}) = 0.10 \cdot 0.90 \cdot 0.2 + 0.20 \cdot 0.80 \cdot 0.3 + 0.30 \cdot 0.70 \cdot 0.3 + 0.40 \cdot 0.50 \cdot 0.1 + 0.50^2 \cdot 0.1 = 0.178$$

$$P(0.10 | \text{BUY,NOT BUY}) = 0.10 \cdot 0.90 \cdot 0.2 / 0.178 \approx 0.1011$$

$$P(0.20 | \text{BUY,NOT BUY}) = 0.20 \cdot 0.80 \cdot 0.3 / 0.178 \approx 0.2697$$

$$P(0.30 | \text{BUY,NOT BUY}) = 0.30 \cdot 0.70 \cdot 0.3 / 0.178 \approx 0.3539$$

$$P(0.40 | \text{BUY,NOT BUY}) = 0.40 \cdot 0.50 \cdot 0.1 / 0.178 \approx 0.1348$$

$$P(0.50 | \text{BUY,NOT BUY}) = 0.50^2 \cdot 0.1 / 0.178 \approx 0.1404$$

```
VSI(BUY,NOT\ BUY) = E''R(a''|BUY,NOT\ BUY) - E''R(a'|BUY,NOT\ BUY)
a' = \text{Stock } 50 \text{ (as before)}
a'' = \operatorname{argmax} ER(a|BUY, NOT BUY)
ER(a|BUY,NOT BUY) = \sum_{a} R(a,\theta) \cdot P(\theta|BUY,NOT BUY)
ER(Stock 100|BUY,NOT BUY)
= (-10) \cdot 0.1011 \dots + (-2) \cdot 0.2697 \dots + 12 \cdot 0.3539 \dots \pm \underline{\phantom{0}}22 \cdot 0.1348 \dots + 40 \cdot 0.1404 \dots \approx 11.28
ER(Stock 50|BUY,NOT BUY)
= (-4) \cdot 0.1011 \dots + 6 \cdot 0.2697 \dots + 12 \cdot 0.3539 \dots +
                           26 \cdot 0.1348 \dots + 16 \cdot 0.1404 \dots \approx 9.87
ER(Do not stock|BUY,NOT BUY)
= 0 \cdot 0.1011 \dots + 0 \cdot 0.2697 \dots + 0 \cdot 0.3539 \dots +
                           0 \cdot 0.1348 \dots + 0 \cdot 0.1404 \dots = 0
\Rightarrow a'' = \text{Stock } 100
\Rightarrow
VSI(BUY,NOT\ BUY) = E''R(Stock\ 100|BUY,NOT\ BUY) -
E''R(\text{Stock 50}|\text{BUY},\text{NOT BUY}) \approx 11.28 - 9.87 = 1.41
```

	PROPO	RTION C	F CUSTO	OMERS B	UYING, $ heta$
DECISION	0.10	0.20	0.30	0.40	0.50
Stock 100	-10	-2	12	22	40
Stock 50	-4	6	12	16	16
Do not stock	0	0	0	0	0

NOT BUY, NOT BUY:

Posterior distribution:

$$P(\theta|\text{NOT BUY,NOT BUY}) = \frac{P(\text{NOT BUY,NOT BUY}|\theta) \cdot P(\theta)}{P(\text{NOT BUY,NOT BUY})} = \frac{P(\text{NOT BUY,NOT BUY}|\theta) \cdot P(\theta)}{\sum_{\lambda} P(\text{NOT BUY,NOT BUY}|\lambda) \cdot P(\lambda)}$$

$$P(\text{NOT BUY,NOT BUY}|\theta) = (1 - \theta)^{2}$$

$$\Rightarrow$$

$$P(\text{NOT BUY,NOT BUY}) = 0.90^{2} \cdot 0.2 + 0.80^{2} \cdot 0.3 + 0.70^{2} \cdot 0.3 + 0.60^{2} \cdot 0.1 + 0.50^{2} \cdot 0.1 = 0.562$$

$$P(0.10|\text{NOT BUY,NOT BUY}) = 0.90^{2} \cdot 0.2/0.562 \approx 0.2883$$

$$P(0.20|\text{NOT BUY,NOT BUY}) = 0.80^{2} \cdot 0.3/0.562 \approx 0.3416$$

$$P(0.30|\text{NOT BUY,NOT BUY}) = 0.70^{2} \cdot 0.3/0.562 \approx 0.2616$$

$$P(0.40|\text{NOT BUY,NOT BUY}) = 0.60^{2} \cdot 0.1/0.562 \approx 0.0641$$

$$P(0.50|\text{NOT BUY,NOT BUY}) = 0.50^{2} \cdot 0.1/0.562 \approx 0.0445$$

```
VSI(NOT BUY,NOT BUY) = E''R(a''|NOT BUY,NOT BUY) -
                                 E''R(a'|NOT BUY,NOT BUY)
a' = \text{Stock 50} (as before) a'' = \operatorname{argmax} ER(a|\text{NOT BUY}, \text{NOT BUY})
ER(a|\text{NOT BUY},\text{NOT BUY}) = \sum_{i} R(a,\theta) \cdot P(\theta|\text{NOT BUY},\text{NOT BUY})
ER(Stock 100|NOT BUY,NOT BUY)
= (-10) \cdot 0.2883 \dots + (-2) \cdot 0.3416 \dots + 12 \cdot 0.2616 \dots +
                         22 \cdot 0.0641 \dots + 40 \cdot 0.0445 \dots \approx 2.76
ER(Stock 50|NOT BUY,NOT BUY)
= (-4) \cdot 0.2883 \dots + 6 \cdot 0.3416 \dots + 12 \cdot 0.2616 \dots + 26 \cdot 0.0641 \dots + 16 \cdot 0.0445 \dots \approx 5.77
ER(Do not stock|NOT BUY,NOT BUY)
= 0 \cdot 0.2883 \dots + 0 \cdot 0.3416 \dots + 0 \cdot 0.2616 \dots +
                         0 \cdot 0.0641 \dots + 0 \cdot 0.0445 \dots = 0
\Rightarrow a'' = \text{Stock } 50
VSI(NOT BUY,NOT BUY) = E''R(Stock 50|NOT BUY,NOT BUY) -
E''R(\text{Stock } 50|\text{NOT BUY},\text{NOT BUY}) = (5.77 - 5.77) = 0
```

```
EVSI = \sum_{y} VSI(y)P(y) =

= VSI(BUY,BUY) · P(BUY,BUY) + 2 · VSI(BUY,NOT BUY) · P(BUY,NOT BUY)

+ VSI(NOT BUY,NOT BUY) · P(NOT BUY,NOT BUY) =

= 7.17 · 0.082 + 2 · 1.41 · 0.178 + 0 · 0.652 \approx 1.09
```

(b,c) Tedious to sort out the calculations for sample sizes greater than 2.

Use the fact that the sample outcome is that of binomial sampling:

$$P(\theta|\text{Sample outcome}) \propto P(\text{Sample outcome}|\theta) \times P(\theta) =$$

= $P(y|\theta) \times P(\theta) = \binom{n}{y} \theta^y \cdot (1-\theta)^{n-y} \times P(\theta)$

Let

$$\begin{aligned} \boldsymbol{\theta} &= (\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5})^{\mathrm{T}} & column \ matrix \\ P(\boldsymbol{\theta}) &= \left(P(\theta_{1}), P(\theta_{2}), P(\theta_{3}), P(\theta_{4}), P(\theta_{5})\right)^{\mathrm{T}} & column \ matrix \\ P(y|\boldsymbol{\theta}) &= \left(P(y|\theta_{1}), P(y|\theta_{2}), P(y|\theta_{3}), P(y|\theta_{4}), P(y|\theta_{5})\right)^{\mathrm{T}} & column \ matrix \\ \Rightarrow P(\boldsymbol{\theta}|y) &= \frac{P(y|\boldsymbol{\theta}) \odot P(\boldsymbol{\theta})}{P(y|\boldsymbol{\theta})^{\mathrm{T}} \cdot P(\boldsymbol{\theta})} = \frac{\boldsymbol{\theta}^{\circ y} \odot (1 - \boldsymbol{\theta})^{\circ (n - y)} \odot P(\boldsymbol{\theta})}{[\boldsymbol{\theta}^{\circ y} \odot (1 - \boldsymbol{\theta})^{\circ (n - y)}]^{\mathrm{T}} \cdot P(\boldsymbol{\theta})} & column \ matrix \end{aligned}$$

⊙ elementwise multiplication ; ...° elementwise exponentiation

$$ER(y) = (ER(\text{Stock } 100|y), ER(\text{Stock } 50|y), ER(\text{Do not stock}|y))^{\text{T}}$$
 column matrix

$$\mathbf{Rmat} = \begin{pmatrix} -10 & -2 & 12 & 22 & 40 \\ -4 & 6 & 12 & 16 & 16 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

payoff table as a 3×5 matrix

$$\Rightarrow ER(y) = Rmat \cdot P(\theta|y)$$

у	θ	$P(\theta)$	$P(y \mid \theta)$	$P(\theta y)$	E"R(Stock 100)	E"R(Stock 50)	E"R(Do not stock)	<i>a</i> "	a'	E"(a ')	ISA	P(y)	EVSI
0	0.1	0.2	0.591	0.425									
	0.2	0.3	0.328	0.354									
	0.3	0.3	0.168	0.182									
	0.4	0.1	0.078	0.028									
	0.5	0.1	0.031	0.011	-1.716	3.230	$\mid 0 \mid$	Stock	Stock	3.230	0	0.2777	0
								50	50				
1	0.1	0.2	0.328	0.194									
	0.2	0.3	0.410	0.364									
	0.3	0.3	0.360	0.320									
	0.4	0.1	0.259	0.077									
	0.5	0.1	0.156	0.046	4.703	7.206	0	Stock	Stock	7.206	0	0.3381	+0
								50	50				

2	0.1	0.2	0.073	0.062									
	0.2	0.3	0.205	0.262									
	0.3	0.3	0.309	0.395									
	0.4	0.1	0.346	0.147									
	0.5	0.1	0.313	0.133	12.169	10.555	0	Stock 100	Stock 50	10.555	1.6139	0.2344	+0.38
3	0.1	0.2	0.008	0.015									
	0.2	0.3	0.051	0.138									
	0.3	0.3	0.132	0.358									
	0.4	0.1	0.230	0.208									
	0.5	0.1	0.313	0.282	19.703	12.893	0	Stock 100	Stock 50	12.893	6.8101	0.1110	+0.76
4	0.1	0.2	5e-04	0.003									
	0.2	0.3	0.006	0.057									
	0.3	0.3	0.028	0.252									
	0.4	0.1	0.077	0.227									
	0.5	0.1	0.156	0.462	26.354	14.373	0	Stock 100	Stock 50	14.373	11.9804	0.0338	+0.40
5	0.1	0.2	0	4e-04									
	0.2	0.3	3e-04	0.019									
	0.3	0.3	0.002	0.147									
	0.4	0.1	0.010	0.206									
	0.5	0.1	0.031	0.628	31.363	15.213	0	Stock 100	Stock 50	15.213	16.1503	0.0050	+0.08
													= 1.62

y	θ	$P(\theta)$	$P(y \mid \theta)$	$P(\theta y)$	E'R(Stock 100)	E'R(Stock 50)	E'R(Do not stock)	<i>a</i> "	a'	E'(a')	VSI	<i>P</i> (y)	EVSI
0	0.1	0.2	0.349	0.628									
	0.2	0.3	0.107	0.290									
	0.3	0.3	0.028	0.076									
	0.4	0.1	0.006	0.005									
	0.5	0.1	0.001	9e-04	-5.785	0.245	0	Stock 50	Stock 50	0.245	0	0.1111	0
1	0.1	0.2	0.387	0.389									
	0.2	0.3	0.268	0.404									
	0.3	0.3	0.121	0.182									
	0.4	0.1	0.040	0.020									
	0.5	0.1	0.010	0.005	-1.868	3.457	0	Stock 50	Stock 50	3.457	0	0.1993	+0

2	0.1	0.2	0.194	0.180									
	0.2	0.3	0.302	0.420									
	0.3	0.3	0.234	0.325									
	0.4	0.1	0.121	0.056									
	0.5	0.1	0.044	0.020	3.306	6.916	0	Stock 50	Stock 50	6.916	0	0.2159	+0
3	0.1	0.2	0.057	0.062									
	0.2	0.3	0.201	0.326									
	0.3	0.3	0.267	0.432									
	0.4	0.1	0.215	0.116									
	0.5	0.1	0.117	0.063	9.002	9.768	0	Stock 50	Stock 50	9.768	0	0.1851	+0
4	0.1	0.2	0.011	0.017									
	0.2	0.3	0.088	0.197									
	0.3	0.3	0.200	0.447									
	0.4	0.1	0.251	0.187									
	0.5	0.1	0.205	0.153	15.024	11.911	0	Stock 100	Stock 50	11.911	3.1121	0.1343	+0.42
5	0.1	0.2	0.002	0.004									
	0.2	0.3	0.026	0.095									
	0.3	0.3	0.103	0.369									
	0.4	0.1	0.201	0.240									
	0.5	0.1	0.246	0.294	21.217	13.509	0	Stock 100	Stock 50	13.509	7.7089	0.0838	+0.65

	0.1	0.0	1 04	<i>c</i> 0.4									
6	0.1	0.2	1e-04	6e-04									
	0.2	0.3	0.006	0.037									
	0.3	0.3	0.037	0.249									
	0.4	0.1	0.112	0.251									
	0.5	0.1	0.205	0.462	26.922	14.621	0	Stock 100	Stock 50	14.621	12.3011	0.0444	+0.55
7	0.1	0.2	0.0000	1e-04									
	0.2	0.3	8e-04	0.013									
	0.3	0.3	0.009	0.143									
	0.4	0.1	0.043	0.225									
	0.5	0.1	0.117	0.620	31.428	15.302	0	Stock 100	Stock 50	15.302	16.1256	0.0189	+0.30
8	0.1	0.2	0.0000	0.000									
	0.2	0.3	1e-04	0.004									
	0.3	0.3	0.001	0.073									
	0.4	0.1	0.011	0.180									
	0.5	0.1	0.044	0.743	34.555	15.669	0	Stock 100	Stock 50	15.669	18.8859	0.0059	+0.11

У	θ	$P(\theta)$	$P(y \mid \theta)$	$P(\theta y)$	E"R(Stock 100)	E"R(Stock 50)	E"R(Do not stock)	<i>a</i> "	a'	E''(a')	ISA	P(y)	EVSI
9	0.1	0.2	0.0000	0.000									
	0.2	0.3	0.0000	0.001									
	0.3	0.3	1e-04	0.035									
	0.4	0.1	0.002	0.134									
	0.5	0.1	0.010	0.830	36.566	15.849	0	Stock 100	Stock 50	15.849	20.7167	0.0012	+0.02
10	0.1	0.2	0.0000	0.0000									
	0.2	0.3	0.0000	3e-04									
	0.3	0.3	0.0000	0.016									
	0.4	0.1	1e-04	0.095									
	0.5	0.1	0.001	0.888	37.820	15.933	0	Stock 100	Stock 50	15.933	21.8876	0.0001	+0.002
													= 2.05

(d) n = 1: ENGS(1) = EVSI(1) – CS(1) $\approx 0.84 - 0.50 \cdot 1 = 0.34$

n = 2: ENGS(2) = EVSI(2) – CS(2) $\approx 1.09 - 0.50 \cdot 2 = 0.09$

n = 5: ENGS(5) = EVSI(5) – CS(5) $\approx 1.62 - 0.50.5 = -0.88$

n = 10: ENGS(10) = EVSI(10) – CS(10) $\approx 2.05 - 0.50 \cdot 10 = -2.95$

Finally, Exercise 6.27

- 27. In Exercise 17, consider a sequential sampling plan with a maximum total sample size of two and analyze the problem as follows.
 - (a) Represent the situation in terms of a tree diagram.
 - (b) Using backward induction, find the ENGS for the sequential plan.
 - (c) Compare the sequential plan with a single-stage plan having n = 2.

0.50

Prior distribution:

$$\begin{array}{c|cc}
\theta & P(\tilde{\theta} = \theta) \\
\hline
0.10 & 0.2 \\
0.20 & 0.3 \\
0.30 & 0.3 \\
0.40 & 0.1 \\
0.50 & 0.1
\end{array}$$

$$ER(\text{Stock } 100) =$$
 $(-10) \cdot 0.2 + (-2) \cdot 0.3 + 12 \cdot 0.3 + 22 \cdot 0.1 + 40 \cdot 0.1$
 $= 7.2$
 $ER(\text{Stock } 50) =$
 $(-4) \cdot 0.2 + 6 \cdot 0.3 + 12 \cdot 0.3 + 16 \cdot 0.1 + 16 \cdot 0.1 \neq 7.8$ | Max
 $ER(\text{Do not stock}) =$
 $0 \cdot 0.2 + 0 \cdot 0.3 + 0 \cdot 0.3 + 0 \cdot 0.1 + 0 \cdot 0.1 = 0$

First sampled consumer

If outcome = Purchase

Posterior probabilities of $\tilde{\theta}$:

$$\begin{split} P(\tilde{\theta} = \theta \,|\, P_1) &= \frac{P(P_1 \,|\, \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta)}{\left[P(P_1 \,|\, \tilde{\theta} = 0.1) \cdot P(\tilde{\theta} = 0.1) + P(P_1 \,|\, \tilde{\theta} = 0.2) \cdot P(\tilde{\theta} = 0.2) + P(P_1 \,|\, \tilde{\theta} = 0.3) \cdot P(\tilde{\theta} = 0.3) + P(P_1 \,|\, \tilde{\theta} = 0.4) \cdot P(\tilde{\theta} = 0.4) + P(P_1 \,|\, \tilde{\theta} = 0.5) + P(P_1 \,|\, \tilde{\theta} = 0.5) + P(\tilde{\theta} = 0.5$$

<u>If outcome = No purchase</u>

Posterior probabilities of $\tilde{\theta}$:

$$\begin{split} P\big(\tilde{\theta} = \theta \, \big| \, \mathrm{NP_1} \big) &= \frac{P\big(\mathrm{NP_1} \big| \tilde{\theta} = \theta\big) \cdot P\big(\tilde{\theta} = \theta\big)}{ \begin{bmatrix} P\big(\mathrm{NP_1} \big| \tilde{\theta} = 0.1\big) \cdot P\big(\tilde{\theta} = 0.1\big) + P\big(\mathrm{NP_1} \big| \tilde{\theta} = 0.2\big) \cdot P\big(\tilde{\theta} = 0.2\big) + \\ P\big(\mathrm{NP_1} \big| \tilde{\theta} = 0.3\big) \cdot P\big(\tilde{\theta} = 0.3\big) + P\big(\mathrm{NP_1} \big| \tilde{\theta} = 0.4\big) \cdot P\big(\tilde{\theta} = 0.4\big) + \\ P\big(\mathrm{NP_1} \big| \tilde{\theta} = 0.5\big) \cdot P\big(\tilde{\theta} = 0.5\big) \\ &= \frac{P\big(\mathrm{NP_1} \big| \tilde{\theta} = \theta\big) \cdot P\big(\tilde{\theta} = \theta\big)}{0.9 \cdot 0.2 + 0.8 \cdot 0.3 + 0.7 \cdot 0.3 + 0.6 \cdot 0.1 + 0.5 \cdot 0.1} = \frac{P\big(\mathrm{NP_1} \big| \tilde{\theta} = \theta\big) \cdot P\big(\tilde{\theta} = \theta\big)}{0.74} \\ &\Rightarrow P\big(\tilde{\theta} = 0.1 \big| \mathrm{NP_1} \big) = 0.9 \cdot 0.2 / 0.74 = 18 / 74 \; ; \; P\big(\tilde{\theta} = 0.2 \big| \mathrm{NP_1} \big) = 24 / 74 \; ; \\ P\big(\tilde{\theta} = 0.3 \big| \mathrm{NP_1} \big) = 21 / 74 \; ; \; P\big(\tilde{\theta} = 0.4 \big| \mathrm{NP_1} \big) = 6 / 74 \; ; \; P\big(\tilde{\theta} = 0.2 \big| \mathrm{NP_1} \big) = 5 / 74 \; ; \end{split}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | P_1)$ 2/26 6/26 9/26 4/26 5/26

Stock 100
$$|P_1|$$
 =

Stock 100 $(-10) \cdot \frac{2}{26} + (-2) \cdot \frac{6}{26} + 12 \cdot \frac{9}{26} + 22 \cdot \frac{4}{26} + 40 \cdot \frac{5}{26} \approx \frac{14.0}{26} \text{ Max}$

Stock 50 $ER(\text{Stock } 50|P_1) =$

Do not stock $(-4) \cdot \frac{2}{26} + 6 \cdot \frac{6}{26} + 12 \cdot \frac{9}{26} + 16 \cdot \frac{4}{26} + 16 \cdot \frac{5}{26} \approx \frac{10.8}{26}$
 $ER(\text{Do not stock}|P_1) = 0$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50
 $P(\tilde{\theta} = \theta | \text{NP}_1)$ 18/74 24/74 21/74 6/74 5/74

Second sampled consumer, case 1

<u>If outcome = Purchase</u>

Posterior probabilities of θ :

<u>If outcome = No purchase</u>

Posterior probabilities of θ :

$$\begin{split} P(\tilde{\theta} = \theta \big| \text{NP}_2, \text{P}_1 \big| \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta) \\ P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = 0.1) \cdot P(\tilde{\theta} = 0.1) + P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = 0.2) \cdot P(\tilde{\theta} = 0.2) + \\ P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = 0.3) \cdot P(\tilde{\theta} = 0.3) + P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = 0.4) \cdot P(\tilde{\theta} = 0.4) + \\ P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = 0.5) \cdot P(\tilde{\theta} = 0.5) \\ = \frac{P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta)}{0.1 \cdot 0.9 \cdot 0.2 + 0.2 \cdot 0.8 \cdot 0.3 + 0.3 \cdot 0.7 \cdot 0.3 + 0.4 \cdot 0.6 \cdot 0.1 + 0.5^2 \cdot 0.1} = \frac{P(\text{NP}_2, \text{P}_1 \big| \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta)}{0.178} \\ \Rightarrow P(\tilde{\theta} = 0.1 \big| \text{NP}_2, \text{P}_1 \big) = 0.1 \cdot 0.9 \cdot 0.2 / 0.26 = 18 / 178 \; ; \; P(\tilde{\theta} = 0.2 \big| \text{NP}_2, \text{P}_1 \big) = 48 / 178 \; ; \\ P(\tilde{\theta} = 0.3 \big| \text{NP}_2, \text{P}_1 \big) = 63 / 178 \; ; \; P(\tilde{\theta} = 0.4 \big| \text{NP}_2, \text{P}_1 \big) = 24 / 178 \; ; \; P(\tilde{\theta} = 0.5 \big| \text{NP}_2, \text{P}_1 \big) = 25 / 178 \; ; \end{split}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | P_2, P_1)$ 2/82 12/82 27/82 16/82 25/82

$$ER(\text{Stock } 100 | P_2, P_1) = \\ (-10) \cdot \frac{2}{82} + (-2) \cdot \frac{12}{82} + 12 \cdot \frac{27}{82} + 22 \cdot \frac{16}{82} + 40 \cdot \frac{25}{82} \approx \boxed{19.9}$$

$$ER(\text{Stock } 50 | P_2, P_1) = \\ (-4) \cdot \frac{2}{82} + 6 \cdot \frac{12}{82} + 12 \cdot \frac{27}{82} + 16 \cdot \frac{16}{82} + 16 \cdot \frac{25}{892} \approx \underline{12.7}$$

$$ER(\text{Do not stock} | P_2, P_1) = 0$$

Stock 100

$$ER(\text{Stock }100|\text{NP}_2,\text{P}_1) = \\ (-10) \cdot \frac{18}{178} + (-2) \cdot \frac{48}{178} + 12 \cdot \frac{63}{178} + 22 \cdot \frac{24}{178} + 40 \cdot \frac{25}{178} \approx \boxed{11.3} \text{ Max} \\ ER(\text{Stock }50|\text{NP}_2,\text{P}_1) = \\ (-4) \cdot \frac{18}{178} + 6 \cdot \frac{48}{178} + 12 \cdot \frac{63}{178} + 16 \cdot \frac{24}{178} + 16 \cdot \frac{25}{178} \approx \underline{9.9} \\ ER(\text{Do not stock}|\text{NP}_2,\text{P}_1) = \underline{0}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | NP_2, P_1)$ 18/178 48/178 63/178 24/178 25/178

Second sampled consumer, case 2

If outcome = Purchase

Posterior probabilities of $\tilde{\theta}$:

$$P(\tilde{\theta} = \theta | P_2, NP_1) = \begin{cases} Independent \\ samples (Bernoulli) \\ trials \end{cases} = P(\tilde{\theta} = \theta | NP_2, P_1)$$

$$= \frac{P(NP_2, P_1 | \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta)}{0.178}$$

$$\Rightarrow P(\tilde{\theta} = 0.1 | P_2, NP_1) = 18/178 \; ; \; P(\tilde{\theta} = 0.2 | P_2, NP_1) = 48/178 \; ;$$

$$P(\tilde{\theta} = 0.3 | P_2, NP_1) = 63/178 \; ; \; P(\tilde{\theta} = 0.4 | P_2, NP_1)$$

$$= 24/178 \; ; \; P(\tilde{\theta} = 0.5 | P_2, NP_1) = 25/178$$

<u>If outcome = No purchase</u>

Posterior probabilities of $\tilde{\theta}$:

$$\begin{split} P\big(\tilde{\theta} = \theta \, \big| \, \mathrm{NP_2, NP_1} \big| &\tilde{\theta} = \theta \, \big) \cdot P\big(\tilde{\theta} = \theta \, \big) \\ P\big(\tilde{\theta} = \theta \, \big| \, \mathrm{NP_2, NP_1} \big| \tilde{\theta} = 0.1 \, \big) \cdot P\big(\tilde{\theta} = 0.1 \, \big) + P\big(\mathrm{NP_2, NP_1} \big| \tilde{\theta} = 0.2 \, \big) \cdot P\big(\tilde{\theta} = 0.2 \, \big) + \Big] \\ = \frac{P\big(\mathrm{NP_2, NP_1} \big| \tilde{\theta} = 0.3 \, \big) \cdot P\big(\tilde{\theta} = 0.3 \, \big) + P\big(\mathrm{NP_2, NP_1} \big| \tilde{\theta} = 0.4 \, \big) \cdot P\big(\tilde{\theta} = 0.4 \, \big) + \Big]}{P\big(\mathrm{NP_2, NP_1} \big| \tilde{\theta} = \theta \, \big) \cdot P\big(\tilde{\theta} = \theta \, \big)} \\ = \frac{P\big(\mathrm{NP_2, NP_1} \big| \tilde{\theta} = \theta \, \big) \cdot P\big(\tilde{\theta} = \theta \, \big)}{0.9^2 \cdot 0.2 + 0.8^2 \cdot 0.3 + 0.7^2 \cdot 0.3 + 0.6^2 \cdot 0.1 + 0.5^2 \cdot 0.1} \\ \Rightarrow P\big(\tilde{\theta} = 0.1 \big| \mathrm{NP_2, NP_1} \big) = 0.9^2 \cdot 0.2 / 0.562 = 162 / 562 \; ; \; P\big(\tilde{\theta} = 0.2 \big| \mathrm{NP_2, NP_1} \big) = 192 / 562 \; ; \\ P\big(\tilde{\theta} = 0.3 \big| \mathrm{NP_2, NP_1} \big) = 147 / 562 \; ; \; P\big(\tilde{\theta} = 0.4 \big| \mathrm{NP_2, NP_1} \big) = 36 / 562 \; ; \; P\big(\tilde{\theta} = 0.2 \big| \mathrm{NP_2, NP_1} \big) = 25 / 562 \end{split}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | P_2, NP_1)$ 18/178 48/178 63/178 24/178 25/178

$$ER(\text{Stock } 100|P_2, NP_1) = ER(\text{Stock } 100|NP_2, P_1) \approx 11.3$$
 Max
 $ER(\text{Stock } 50|P_2, NP_1) = ER(\text{Stock } 50|NP_2, P_1) \approx 9.9$ \sim $ER(\text{Do not stock}|P_2, NP_1) = 0$

$$ER(\text{Stock } 100 | \text{NP}_2, \text{NP}_1) = \\ (-10) \cdot \frac{162}{562} + (-2) \cdot \frac{192}{562} + 12 \cdot \frac{147}{562} + 22 \cdot \frac{36}{562} + 40 \cdot \frac{25}{562} \approx \underline{2.8} \\ ER(\text{Stock } 50 | \text{NP}_2, \text{NP}_1) = \\ (-4) \cdot \frac{162}{562} + 6 \cdot \frac{192}{562} + 12 \cdot \frac{147}{562} + 16 \cdot \frac{36}{562} + 16 \cdot \frac{25}{562} \approx \underline{5.8} \text{ Max} \\ ER(\text{Do not stock} | \text{NP}_2, \text{NP}_1) = \underline{0}$$

$$\theta$$
 0.10 0.20 0.30 0.40 0.50 $P(\tilde{\theta} = \theta | \text{NP}_2, \text{NP}_1)$ 162/562 192/562 147/562 36/562 25/562

$$ER_{\text{max}}|P_1 \text{ and sampling} = 19.9 \cdot P(P_2|P_1) + 11.3 \cdot P(NP_2|P_1)$$

Sampling in stage 2
is assumed to be
independent of
sampling in stage 1
$$= \begin{vmatrix} Sampling & in stage & 2 \\ Sampling & in stage & 1 \end{vmatrix} = 19.9 \cdot P(P_2) + 11.3 \cdot P(NP_2)$$

$$= 19.9 \cdot \sum_{\theta} P(P_2 | \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta) + 11.3 \cdot \sum_{\theta} P(NP_2 | \tilde{\theta} = \theta) \cdot P(\tilde{\theta} = \theta)$$

$$= 19.9 \cdot 0.26 + 11.3 \cdot 0.74 \approx 14.54$$

$$ER_{\text{max}}|P_1$$
 and sampling = $11.3 \cdot P(P_2|NP_1) + 5.8 \cdot P(NP_2|NP_1)$

=
$$11.3 \cdot P(P_2) + 5.8 \cdot P(NP_2) = 11.3 \cdot 0.26 + 5.8 \cdot 0.74 \approx 7.23$$

 $ER_{max}|P_1$ and sampling=13.54

 $ER_{\text{max}}|P_1 = \max(13.54 - 0.5, 14.8) = 14.8$

$$ER_{max}|NP_1$$
 and sampling=7.23

$$ER_{\text{max}}|NP_1 = \max(7.23 - 0.5, 6.8) = 6.8$$

$$ER_{\text{max}}|\text{sampling} = 14.8 \cdot P(P_1) + 6.8 \cdot P(NP_1) =$$

= 14.8 \cdot 0.26 + 6.8 \cdot 0.74 = 8.9

$$ER_{\text{max}} \mid \text{optimal} = ER_{\text{max}} \mid \text{sampling} - CS_1 = 8.9 - 0.5 = 8.4$$

$$\Rightarrow$$
 ENGS = 8.4 – 7.8 = 0.6

Single-stage plan (from Exercise 6.17): ENGS(2) = 0.09